Fluid dispenser

Fluent material handling – with receiver or receiver coacting mea – Processes – Filling dispensers

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C141S025000, C141S027000, C141S327000, C222S321800, C222S482000

Reexamination Certificate

active

06192945

ABSTRACT:

NOTICE REGARDING COPYRIGHT
A portion of the disclosure of this patent document contains matter subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent disclosure document as it appears in the Patent and Trademark Office files and records but otherwise retains all copyrights whatsoever.
BACKGROUND OF THE INVENTION
A. Field of the Invention
This invention relates to biological reaction systems, and more particularly relates to a method and apparatus for an automated biological reaction system.
B. Description of Related Art
Immunostaining and in situ DNA analysis are useful tools in histological diagnosis and the study of tissue morphology. Immunostaining relies on the specific binding affinity of antibodies with epitopes in tissue samples, and the increasing availability of antibodies which bind specifically with unique epitopes present only in certain types of diseased cellular tissue. Immunostaining requires a series of treatment steps conducted on a tissue section mounted on a glass slide to highlight by selective staining certain morphological indicators of disease states. Typical steps include pretreatment of the tissue section to reduce non-specific binding, antibody treatment and incubation, enzyme labeled secondary antibody treatment and incubation, substrate reaction with the enzyme to produce a fluorophore or chromophore highlighting areas of the tissue section having epitopes binding with the antibody, counterstaining, and the like. Each of these steps is separated by multiple rinse steps to remove unreacted residual reagent from the prior step. Incubations are conducted at elevated temperatures, usually around 40° C., and the tissue must be continuously protected from dehydration. In situ DNA analysis relies upon the specific binding affinity of probes with unique nucleotide sequences in cell or tissue samples and similarly involves a series of process steps, with a variety of reagents and process temperature requirements.
Automated biological reaction systems include the biological reaction apparatus and the dispensers for the reagents and other fluids used in the biological reaction apparatus. As disclosed in U.S. Pat. No. 5,595,707, inventors Copeland et al., entitled Automated Biological Reaction Apparatus, assigned to Ventana Medical Systems, Inc. which is incorporated herein by reference, the biological reaction apparatus may be computer controlled. However, the computer control is limited in that it is dedicated to and resident on the biological reaction apparatus. Moreover, the memory, which is used in conjunction with the computer control, contains data relating to the reagents including serial number, product code (reagent type), package size (250 test), and the like.
One of the requirements in a biological reaction system is consistency in testing. In particular, the biological reaction system should apply a predetermined amount of fluid upon the slide in order to consistently test each slide in the automated biological reaction apparatus. Therefore, an important focus of a biological reaction system is to consistently and efficiently apply a predetermined amount of fluid on the slide.
Further, as disclosed in U.S. Pat. No. 5,232,664 entitled Liquid Dispenser by inventors Krawzak et al. and assigned to Ventana Medical Systems, Inc., which is incorporated herein by reference, reagents must be dispensed on the slide in precise amounts using a fluid dispenser. The fluid dispenser, which is used in conjunction with the biological reaction apparatus, should be easy to manufacture, reliable and compact in size.
SUMMARY OF THE INVENTION
In accordance with a first aspect of the invention, a fluid dispenser for an automated biological reaction system is provided. The fluid dispenser has a reservoir chamber, a dispense chamber which is substantially in line with the reservoir chamber, and a means for transferring fluid between the dispense chamber and the reservoir chamber based on pressure differential between the dispense chamber and the reservoir chamber.
In accordance with a second aspect of the invention, a fluid dispenser for an automated biological reaction system is provided. The fluid dispenser has a barrel which has a reservoir chamber and an upper portion, a cap connected to the upper portion of the barrel, a valve adjacent to the reservoir chamber, and a coupler having a dispense chamber and the coupler being coaxial with the barrel.
In accordance with a third aspect of the invention, a fluid dispenser for an automated biological reaction system is provided. The fluid dispenser has a barrel which has a reservoir chamber and an upper portion, a cap connected to the reservoir chamber, a valve adjacent to the reservoir chamber, a coupler having a dispense chamber, and a vent adjacent to the cap. The vent includes a first means to maintain constant pressure in the reservoir chamber, a second means to maintain constant pressure in the reservoir chamber, and a space, the space being between the first and second means to maintain constant pressure in the reservoir chamber.
In accordance with a fourth aspect of the invention, a fluid dispenser for an automated biological reaction system is provided. The fluid dispenser has a barrel which has a reservoir chamber and a piston at a lower portion of the barrel, a cap connected to the reservoir chamber, a valve adjacent to the reservoir chamber, and a coupler. The coupler has a dispense chamber whereby the piston moves in the dispense chamber.
In accordance with a fifth aspect of the invention, a method of assembly of a fluid dispenser for an automated biological reaction system is provided. The method includes the step of inserting a valve and a valve insert into the lower portion of a barrel. The method also includes the step of welding the cap to the upper portion of the barrel. The method further includes the step of placing the ball in the check valve ball seat. Further, the method includes the step of snapping the check valve ball seat into the coupler. In addition, the method includes the step of snapping the coupler and barrel together.
In accordance with a sixth aspect of the invention, a method of filling and priming a fluid dispenser for an automated biological reaction system is provided. The method includes the step of providing the fluid dispenser with a cap, a barrel having a reservoir chamber, the barrel being adjacent to the cap, a dispense chamber adjacent to the reservoir chamber, and a nozzle adjacent to the dispense chamber. The method also includes the step of providing a syringe with a tip and a syringe plunger. The method further includes the step of opening the cap on the fluid dispenser. The method also includes the step of filling the reservoir chamber within the fluid dispenser with fluid. In addition, the method also includes the step of closing the cap on the fluid dispenser. Further, the method also includes the step of placing the tip of the syringe inside the nozzle of the fluid dispenser without requiring the fluid dispenser be turned upside down. And, the method also includes the step of expanding the plunger of the syringe in order to draw fluid from the reservoir chamber and the dispense chamber into the syringe.
In accordance with a seventh aspect of the invention, an automated biological reaction system is provided. The automated biological reaction system has a slide support carousel, drive means engaging the slide support carousel for moving the slide support carousel, a consistency pulse application station comprising at least one nozzle for directing a stream of fluid onto a slide which is less than 35 degrees from the horizontal, and a volume adjust application station positioned above the slide for applying a predetermined amount of fluid on the slide by dropping the fluid onto the slide.
In accordance with a eighth aspect of the invention, a method of placing a consistent amount of fluid on a slide in an automated biological reaction apparatus is provided. The automated biological reaction apparatus has

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fluid dispenser does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fluid dispenser, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fluid dispenser will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2573827

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.