Fluid containment substrates for holographic media

Optical: systems and elements – Holographic system or element – Having particular recording medium

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S002000, C369S282000, C156S107000

Reexamination Certificate

active

06804034

ABSTRACT:

FIELD
The invention relates to holographic data storage media, and more particularly to substrates capable of containing a viscous holographic recording material during media fabrication.
BACKGROUND
Many different types of data storage media have been developed to store information. Traditional media, for instance, include magnetic media, optical media, and mechanical media to name a few. Increasing data storage density is a paramount goal in the development of new or improved types of data storage media.
In traditional media, individual bits of information are stored as distinct mechanical, optical, or magnetic changes on the surface of the media. For this reason, data storage medium surface area imposes physical limits on data densities for a given recording technique.
Holographic data storage media can offer higher storage densities than traditional media. In a holographic medium, data can be stored throughout the volume of a holographic recording material. In other words, holographic media permit three-dimensional data storage. Theoretical holographic storage densities can approach tens of terabits per cubic centimeter.
In holographic data storage media, entire pages of information, e.g., bitmaps, can be stored as optical interference patterns within a photosensitive holographic recording material. The optical interference patterns can be generated by intersecting two coherent laser beams within the recording material. The first laser beam, called the object beam, contains the information to be stored; and the second laser beam, called the reference beam, interferes with the object beam to create an interference pattern that can be stored in the recording material as a hologram. When the stored hologram is later illuminated with only the reference beam, some of the light of the reference beam is diffracted by the holographic interference pattern. Moreover, the diffracted light creates a reconstruction of the original object beam. Thus, by illuminating a recorded hologram with the reference beam, the data encoded in the object beam can be recreated and detected by a data detector such as a camera.
Holographic data storage media may have a sandwiched construction in which a photosensitive holographic recording material, such as a photopolymer formulation, is sandwiched between two substrates and then cured. The holograms are recorded and stored in the holographic recording material. The holographic recording material, however, is typically in a viscous fluid or gel-like form when it is originally sandwiched between the substrates. The viscous nature of the holographic recording material can present challenges in media fabrication.
SUMMARY
The invention is directed to holographic data storage media having a sandwiched construction in which a holographic recording material is sandwiched between two substrates. Various substrate features are described that may improve media quality, simplify the manufacturing process, and provide improved environmental stability to the created media.
For example, one or both of the substrates may be formed with fluid containment features in proximity to outer edges of the respective substrates. Also, the substrates may be formed with centerpieces rather than a center hole. The centerpieces may also be recessed relative to outer surfaces of the respective substrates.
In one embodiment, a holographic data storage medium comprises a first substrate, a second substrate, and a holographic recording material between the first and second substrates. At least one of the substrates, and possibly both of the substrates, may be formed to include fluid containment features in proximity to the outer edge(s) of the substrate(s). The fluid containment features may serve to define a cavity between the substrates that can contain a holographic recording material when the material is in a viscous form.
The fluid containment features may also provide a vent gap through which gas can escape from the cavity when the holographic recording material is injected. Furthermore, in addition to providing advantages in the containment of the holographic recording material when the material is in a viscous form, the fluid containment features may also provide an environmental barrier between the holographic recording material and the environment after the holographic recording material is cured.
In another embodiment, the substrates may be formed with centerpieces rather than center holes commonly formed in optical substrates. The centerpieces may serve to more completely encapsulate the cavity, and thereby contain injected holographic recording material within the cavity. Furthermore, the centerpieces may be recessed relative to outer surfaces of the respective substrates.
By recessing the centerpieces relative to outer surfaces of the respective substrates, flatness of the outermost surfaces of the substrates can be improved, allowing the reference planes of a manufacturing device to define improved parallelism between the outer surfaces during the media manufacturing process. In particular, recessed centerpieces may avoid problems caused by thickness variations in proximity to the centerpieces. Therefore, the outer surfaces of the substrates can be forced against reference planes during the media manufacturing process so that the outer surfaces are substantially parallel to one another, without being inhibited by thickness variations in proximity to the centerpieces.
In another embodiment, the invention is directed to a set of substrates for use in a sandwiched construction data storage medium in which a viscous material is sandwiched between a first substrate and a second substrate during fabrication of the medium. The set of substrates may comprise a first substrate including a first fluid containment feature formed in proximity to an outer edge of the first substrate, and a second substrate including a second fluid containment feature formed in proximity to an outer edge of the second substrate.
In another embodiment, the invention may be directed to a holographic data storage system. For example, the system may include a laser that produces at least one laser beam, optical elements through which the laser beam passes, a data encoder that encodes data in at least part of the laser beam, and a holographic recording medium that stores at least one hologram. The holographic recording medium may include a first substrate, a second substrate, and a holographic recording material between the first and second substrates. One or both of the substrates may be formed with one or more of the substrate features described herein.
In another embodiment, the invention may be directed to a method of fabricating a holographic recording medium. For example, the method may include positioning a first substrate relative to a second substrate to define a cavity, the first substrate including a first fluid containment feature formed in proximity to an outer edge of the first substrate, and the second substrate including a second fluid containment feature formed in proximity to an outer edge of the second substrate such that the cavity is defined by inner surfaces of the first and second substrates and at least one of the first and second fluid containment features. The method may further include injecting a viscous holographic recording material into the cavity, and curing the holographic recording material.
The various embodiments may be capable of providing one or more advantages. In particular, the substrate features described herein may improve media quality, simplify and improve the manufacturing process associated with media fabrication, and may provide improved environmental stability to the created media. Additional details of these and other embodiments are set forth in the accompanying drawings and the description below. Other features, objects and advantages will become apparent from the description and drawings and from the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a cross-sectional side view of an exemplary holographic data storage medium according to an embodiment

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fluid containment substrates for holographic media does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fluid containment substrates for holographic media, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fluid containment substrates for holographic media will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3260512

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.