Food or edible material: processes – compositions – and products – Surface coated – fluid encapsulated – laminated solid... – Dry flake – dry granular – or dry particulate material
Reexamination Certificate
2000-09-12
2003-11-18
Becker, Drew (Department: 1761)
Food or edible material: processes, compositions, and products
Surface coated, fluid encapsulated, laminated solid...
Dry flake, dry granular, or dry particulate material
C426S100000, C426S291000, C426S601000, C426S604000, C426S515000, C426S524000, C062S071000, C062S074000, C062S347000, C062S354000
Reexamination Certificate
active
06649202
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to the manufacture of flakes or chips of congealed fats, or more technically triglycerides, including edible fats, lard and various commercial food products such as edible oils and emulsifiers. In addition, the present invention relates to the field of layering or encapsulating solid or flaked material within other materials. This layering or encapsulation of solids can take the form of: (1) solids mixed in a liquid oil which is hardened and flaked; (2) solids directly added to a liquid which is in the process of being hardened and flaked; and (3) encapsulation of solids with liquids and liquid/gas mixtures of both edible and inedible material.
The present invention is particularly suited to flaking emulsifiers. Emulsifiers or emulsifying agents include mono- and diglycerides of fatty acids, propylene glycol, mono- and di-esters of fatty acids, glycerol-lactose esters of fatty acids, ethoxylated or succinylated mono- and diglycerides, lecithin, diacetyl tartaric acid esters or mono- and diglycerides, sucrose esters of glycerol, phospholipids or equivalents there of and mixtures thereof.
A variety of edible oils are contemplated for use with the present invention, in particular, oil from oil seeds including cotton seed oil, soy bean oil, corn oil, peanut oil, sunflower oil, castor seed oil, safflower oil, palm and olive oils, and the like. The term “fat” is used generally to refer to edible fats and oils comprising triglycerides, fatty acids, fatty alcohols, and ester of such acids and alcohols. For the purposes of this invention, appropriate components are triglycerides of straight chain or branch chain, saturated or unsaturated monocarboxylic acids having from 10 to 28 carbon atoms. suitable sources of such fats are: (1) vegetable fats and oils, as indicated above; (2) meat fats, such as tallow or lard; (3) marine oils, such as menhaden, pilchard, sardine, whale or herring; (4) nut fats and oils such as coconut palm or peanut; (5) milk fats, such as butter fat; (6) coca butter and coca butter substitutes, such as shea or illipe butter; and (7) synthetic fats or a re-esterified fats with fractionated fatty acids.
The present invention further contemplates the addition of various additives into the mixtures to be flaked. It will be appreciated that the use of additives in liquid compositions will lower the melting point of the liquid composition. These additives can be flavorings such as butter, buttermilk, cinnamon, or color such as beta carotene or annoretta or saffron. Solids or solid powders may be included such as non-fat dry milk solids or the pulp of various fruits such as raspberry and blueberry and along with other natural or imitation flavorings or colorings. The present invention overcomes the depression of the melting point which occurs when additives are included in a liquid.
BACKGROUND OF THE INVENTION
It has long been known that fatty substances could be cooled to a solid or semi-solid by applying a hot or warm liquid or semi-liquid of the fat to a rotating drum or continuous cooling belt. In U.S. Pat. No. 788,446 to A. R. Wilson, a liquid fat is sprayed onto a rotating drum or cylinder which is cooled with ice or ice and salt. As the drum rotates, the previously applied liquid is scraped from the drum, and the scraped area of the drum is then subsequently presented for another application of the fat or liquid to be congealed.
These types of drum cooling or mechanical cooling are relatively successful for substances having a sufficiently high melting point. However, as the melting point decreases, the resident's time of the substance on the drum must be increased in order to chill the liquid to a sufficient hardness that upon scraping the substance from the drum, the material cleanly breaks free of the drum and is sufficiently solid that it does not melt together with other materials scraped from the drum. In addition, as the melting point of the liquid applied to the drum becomes lower and lower, the opportunity for the material to melt together again, or to agglomerate, increases due to the continued release of heat from within the formerly liquid substance as it becomes more and more solid after being scraped from the roller and packaged.
In particular, as a substance is chilled to change the material from a liquid to a solid, the heat within the liquid substance is removed, and the material is reduced in temperature to a point at which crystallization of the material begins and a solid of the material begins to form within the liquid. The solid formation increases as heat is removed from the liquid substance. After a time, sufficient heat will have been removed from the substance that the once liquid material becomes generally solid. However, while a material has become generally solid, it may not be fully crystalized and stabilized at a useful temperature. Rather, the material will continue to undergo greater solidification as an increasing percentage of the material becomes a solid crystal. During this period of continued crystallization, heat continues to be given off by the material as it turns from a semi-solid into a solid or becomes stabilized at a particular temperature below the melting point of the original liquid substance. This represents the release of the “heat of crystallization” or the release of the “latent heat of crystallization” of the substance.
In the process of forming chips or flakes from triglycerides, emulsifiers or other edible and non-edible materials, the general process is to apply the liquid substance to a rotating, chilled drum, and to allow the material to stay in contact with the drum for sufficient time to permit the liquid to become sufficiently solid that it can be scraped from the drum. During the scraping process it is preferred that the solid or semi-solid break into flakes or fragments rather than peeling from the drum as a continuous sheet. Once the flakes or fragments of the substance are removed from the drum, they are usually packed into a container and placed into a cooling room for additional cooling and to retain the material in a solid state. It is during this period in the cooling room that additional solidification of this substance continues. As a result of this further solidification, internal heat is given off by the material which is referred to as the “latent heat of crystallization.” Once crystal growth, or solidification, has been initiated in a substance it is necessary, for additional solidification to occur, that heat be removed or transferred from the body undergoing crystallization or solidification. In the case of a partially solidified liquid which has been placed into a packing box, the latent heat of crystallization becomes trapped within the mass of material in the box and begins to generally raise the temperature of the substance. This can result in the material within the package agglomerating due to the latent heat of crystallization partially melting the solid which was formed on the rotating cold drum.
A graphical representation of this phenomenon can be seen in FIG.
6
. In
FIG. 6
, the intermittent line indicates material having a melting point of approximately 114° F. which was initially cooled for 10-30 seconds on a roller. The graph shows that during the mechanical cooling period (T
1
) the temperature decreases from generally 5° F. above the melting point temperature of the fat to be flaked to approximately 50° F.−60° F. At time T
2
, packaging occurs as the material is scraped off the roller. At time T
2
, the time interval changes to days. Once the material is removed from the roller the temperature of the material begins to rise. This rise in temperature continues during the first portion of time T
2
and after the packaged material is placed into a 40° F. cooling room. It is shown in
FIG. 6
that the temperature of the material once packaged and residing in a cooling room continues to rise. This temperature increase is due to the latent heat of crystallization which causes the temperature of the packaged materia
Becker Drew
Shughart Thomson & Kilroy P.C.
LandOfFree
Flat plate flaking device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Flat plate flaking device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flat plate flaking device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3182169