Flash configuration cache

Computer-aided design and analysis of circuits and semiconductor – Nanotechnology related integrated circuit design

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C716S030000, C703S013000

Reexamination Certificate

active

06430730

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to the field of computer-based system configuration.
2. Background Art
Configuring a system refers to the process of selecting and connecting components to satisfy a particular need or request. If a system is based on a limited number of components, the process of configuring the system can be relatively straightforward. For example, the purchase of an automobile requires a salesperson to configure a system (automobile and assorted options) to satisfy a customer's request. After selecting from a plurality of models, the salesperson completes the transaction by selecting options to configure and price an automobile. The configuring of such a simple system can be accomplished with a pencil and paper.
As system specifications become more customized and-varied, configuration alternatives increase and the task of configuring a system becomes more complex. This increased complexity has resulted in a need for computer-based assistance with the configuration process. Early computer-based systems expand independently-generated configuration orders for systems into manufacturing orders. They do not address the actual need for computer-based tools prior to the order expansion. That is, they do not address the actual generation of a system configuration based on needs and/or request input.
An example of a complex system is a desktop computer system. The available configuration alternatives of a computer system are numerous and varied, including alternatives available when choosing the microprocessor, motherboard, monitor, video controller, memory chips, power supply, storage devices, storage device controllers, modems, and software.
Configuring a desktop computer system requires that a selected component is compatible with the other components in the configured system. For example, a power supply must be sufficient to supply power to all of the components of the system. In addition, the monitor must be compatible with the video controller (e.g., resolution), and the storage device must be compatible with its controller (e.g., SCSI interface). A motherboard must have enough slots to handle all of the boards installed in the system.
The physical constraints of the cabinet that houses the system's components are also considered. The cabinet has a fixed number of bays available for storage devices (e.g., floppy disk drives, hard disk drives, or tape backup units). These bays have additional attributes that further define their use. For example, the bay may be located in the front of the cabinet and provide access from the front of the cabinet. Another bay may be located behind the front-accessible bays, and be limited to devices that do not need to be accessed (e.g., hard disk drive). Bays may be full-height or half-height. Before a storage device can be added to the configuration, a configuration system must identify a bay into which the storage device will be housed. This requires that at least the accessibility and height of the storage device must be examined to determine compatibility with an available cabinet bay.
The connection between a storage device and its controller must be determined based on the location of each. The cable that connects the storage device and its controller must provide compatible physical interfaces (e.g., 24-pin male to a 24-pin female).
A method of establishing a communication pathway in a computer system is known as daisy chaining. Daisy chaining provides the ability to interconnect components such that the signal passes through one component to the next. Determining whether a daisy chain may be established requires that the available logical (e.g., IDE or SCSI) and physical interfaces (e.g., 24-pin) of all elements in a daisy chain be known. In addition, it is important to know whether conversions from the source datatype to the destination datatype are allowed. When a daisy chaining candidate is added to the system, the interconnections and conversions between existing components may be checked to determine whether the new component should be an element of the daisy chain.
The power supply and storage device component examples illustrate the need to define the structural interrelationships between components (i.e., physical and spatial relationships). To further illustrate this notion, consider placing components requiring electrical power such as computer, telecommunication, medical or consumer electronic components into two cabinets. Further, each cabinet has an associated power supply that supplies electrical power to the components inside the associated cabinet. To account for electrical power consumption and the requirement that no power supply is overloaded, the model must comprehend the specific cabinet in which each component is placed and update the consumed power for each cabinet. While the total power available in the two cabinets may be sufficient for all of the components to be placed in both of the cabinets, a component cannot be included in a cabinet if its inclusion would cause the cabinet's power supply to overload. Therefore, the physical placement of the component in a cabinet must be known to make a determination if the subsequent placement of a component is valid. Similarly, any physical connections between these components must be taken into account. Each component's position in the structural hierarchy is used to determine minimal or optimal lengths for the connecting components.
Early computer-based configuration systems employed an approach referred to as the rule-based approach. Rule-based configuration systems define rules (i.e., “if A, then B”) to validate a selection of configuration alternatives. Digital Equipment Corporation's system, called R1/XCON (described in McDermott, John, “R1: A Rule-Based Configurer of Computer Systems”,
Artificial Intelligence
19, (1982), pp. 39-88) is an example of a rule-based configuration system. R1/XCON evaluates an existing independently-generated system order and identifies any required modifications to the system to satisfy the model's configuration rules. The rules used to perform the configuration and validation processes are numerous, interwoven, and interdependent. Before any modification can be made to these rules, the spider's web created by these rules must be understood. Any changes to these rules must be made by an individual that is experienced and knowledgeable regarding the effect that any modifications will have to the entire set of rules. Therefore, it is difficult and time-consuming to maintain these rules.
A possible solution to the problems associated with rule-based systems is a constraint-based system. A constraint-based system places constraints on the use of a component in a configuration. For example, a hard disk drive cannot be added to the configuration unless a compatible storage device controller is available for use by the request storage device. The requirement of a controller is a “constraint” on the hard disk drive.
While existing constraint-based systems address some of the shortcomings of rule-based systems, they do not provide a complete configuration tool. Pure constraint-solving systems do not employ a generative approach to configuration (i.e., they do not generate a system configuration based on needs, component requests, and/or resource requests). Existing constraint-based systems use a functional hierarchy that does not address structural aspects associated with the physical placement of a component in a configuration (e.g., memory chip on motherboard or memory expansion board, storage device in cabinet bay, or controller in motherboard slot).
Bennett et al., U.S. Pat. No. 4,591,983 provides an example of a constraint-based system that employs a recognition or verification approach to system configuration instead of a generative approach. That is, Bennett merely validates an independently-configured system. In essence, an order is generated by an independent source such as a salesperson, and Bennett is used to verify that the system contain

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Flash configuration cache does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Flash configuration cache, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flash configuration cache will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2885972

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.