Flaked R-T-E cereal

Food or edible material: processes – compositions – and products – Surface coated – fluid encapsulated – laminated solid... – Dry flake – dry granular – or dry particulate material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C426S560000, C426S621000

Reexamination Certificate

active

06183788

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to food products and to their methods of preparation. More particularly, the present invention relates to ready-to-eat: breakfast cereals, particularly in flake form and to their methods of preparation.
BACKGROUND
Ready-To-Eat (“R-T-E”) cereals are popular packaged goods food items and exist in a variety of forms including flakes, shreds, biscuits and puffed pieces. The present invention provides an improvement in R-T-E cereal flakes.
Conventionally, R-T-E cereals in the form of flakes are prepared by toasting wet cereal flakes. The toasting causes a tenderizing and slight expansion of the R-T-E cereal flakes. Due to natural variations, a certain percentage of the toasted R-T-E cereal flakes will be more or less flat, e.g., about 60%, while the balance, about 40%, will evidence some degree of curling. The particular percentage distributions between flat and curled flakes will vary modestly with varying composition and method of preparation. However, generally, flat flakes will predominate.
One problem with flat flakes is the consumer perception that such products are somehow less natural than curled flakes. Thus, it would be desirable to increase the percentage of curled flakes and/or their amount of curling so as to improve the consumer's impression of the product.
Another problem with flat flakes resides in the relatively high bulk density such products provide.
The description of the density of an R-T-E cereal can be expressed in many ways. One way is to give an absolute value to the individual R-T-E cereals. An historic approach to determining this absolute density is to measure the displacement of a quantity of the flakes in a suitable medium such as rapeseed (due to the rapeseeds' minute particle size).
Another density description is the bulk density. Bulk density is influenced not only by the absolute density of an R-T-E cereal but also by its piece size and shape leading to wide varieties in packing factors. Of course, the lower the packing factor the more air space that is present between individual R-T-E cereal pieces and the lower the bulk density.
The packing factor for R-T-E cereals influences the bulk density and can also vary widely among various R-T-E cereal types. Thus, puffed cereals, because of their initial low absolute density, typically will have low bulk density values. Puffed cereals of many complex shapes will also tend to have even lower bulk density values due to not only the low absolute density but also because of a low packing factor.
However, for particularly shaped cereals, e.g., flakes, the range in bulk density is more narrow. Variations in the bulk density will vary modestly with such factors as pellet count, i.e., the size of the pellet from which the flake is prepared, which in turn affects piece size and flake thickness.
It would be desirable to be able to vary the bulk density of flaked cereals more widely than is possible using merely pellet count and flake thickness.
One aspect of the desirability to control the bulk density concerns the fill percentage of a typical R-T-E cereal package. Typically, an R-T-E cereal package will have a specific density, e.g., 225 g/100 inches
3
. The cereal manufacturer will then typically try to fill approximately 80 to 90% of that volume with a given weight of a particular R-T-E cereal. The extra volume is allowed for changes in air pressure, handling, sealing and other factors.
However, due to breakage of the R-T-E cereal product, settling and other factors, when the consumer opens the package it is not uncommon for the consumer to see perhaps as much as the top third of the package being void of the R-T-E cereal as empty head space. Even though the weight of the contained R-T-E cereal is as specified on the package, the consumer perception is that the price-value relationship for the R-T-E cereal product is deficient because of the empty head space.
It is possible to modestly increase the initial bulk density of an R-T-E flaked cereal by decreasing the flake thickness. However, as flake thickness is decreased, the resultant flake becomes increasingly more fragile. Due to the normal stresses of product handling upon manufacturer distribution and sale, some breakage of the flakes is inevitable. As the flakes decrease in thickness and become more fragile, the percentage of breakage increases rapidly, resulting in the generation of high percentages of broken pieces or “fines” that fall to the bottom of the package. As the percentage of fines increases, the bulk density rapidly increases thereby offsetting or even aggravating the empty head space problem in the container.
Likewise, the pellet count can be adjusted to result in changes in the initial bulk density. Thus, the pellet count for a typical flake R-T-E cereal will be in the range of about 35 to 65 pellets per 10 grams. As the pellet count decreases, and the individual flakes become larger, the bulk density will tend to also desirably decrease. However, as further reductions in the pellet count are made, the gains in reduction of bulk density level off and the individual flakes become unappealingly large. Moreover, the fraction of flakes that are curled tends to decrease as pellet count is decreased and individual flake size enlarges.
In view of the limitations in the current state of the art with respect to the ability to desirably decrease the initial bulk density of a flaked R-T-E cereal, there is a continuing need for new and improved flaked R-T-E cereals characterized by decreased bulk densities.
Accordingly, it is an object of the present invention to provide flaked R-T-E cereals of desirably lower bulk densities.
Another object of the present invention is to provide such flaked R-T-E cereals of reduced bulk density which nonetheless are resistant to breakage.
Still another objective of the present invention is to provide flaked R-T-E cereals of reduced bulk density which nonetheless are characterized by relatively high pellet counts.
Another objective of the present invention is to provide flaked R-T-E cereals having higher percentages of curled flakes.
Another object of the present invention is to increase the degree of curling of the curled flake fraction of a flaked R-T-E cereal.
Surprisingly, the above objectives can be realized and improved flaked R-T-E cereal products provided that not only desirably are characterized by lower bulk densities and by increased curling but also are resistant to breakage.
The present invention resides in part in the surprising discovery that by providing flaked R-T-E cereals having a higher percentage of curled flakes that finished R-T-E products of desirably lower bulk densities can be obtained.
In its method aspect, the present invention resides in methods for preparing such flaked, curled R-T-E cereals of reduced bulk density.
The methods importantly involve the step of forming specially shaped pellets having a higher surface area to volume ratio than conventional spherical pellets or pellets having a circular cross sectional area from which wet flakes typically have been obtained.
SUMMARY OF THE INVENTION
In its finished product aspect, the present invention provides improved, more curled flake R-T-E cereal characterized by a lower bulk density. The R-T-E cereal, comprises a quantity of cereal flakes fabricated from a cooked cereal dough having a bulk density of 150 to 200 g/100
3
inch, an average flake thickness of 635 to 900 &mgr;m (0.025 to 0.035 inch), a moisture content of about 2 to 5%, and at least 45% of the cereal flakes having a breadth (peak to peak width, with flake laid flat) of at least 5 mm.
In another product aspect, the present invention provides intermediate cereal pellet products characterized by having a high surface area to volume ratio for a given pellet count. The surface area to volume ratio is at least 120% of the surface volume ratio for a given weight pellet than for an equivalent weight pellet having a circular cross section. The pellets weigh about 0.35 to 0.65 g and have a surface area to volume ratio of at l

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Flaked R-T-E cereal does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Flaked R-T-E cereal, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flaked R-T-E cereal will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2601345

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.