Liquid crystal cells – elements and systems – Nominal manufacturing methods or post manufacturing...
Reexamination Certificate
1998-01-28
2002-01-15
Parker, Kenneth (Department: 2871)
Liquid crystal cells, elements and systems
Nominal manufacturing methods or post manufacturing...
C349S183000, C349S176000
Reexamination Certificate
active
06339464
ABSTRACT:
The present invention relates to a method of making an optical device. The present invention also relates to a filter which, for instance, may be used as a spectral filter. Such optical devices and filters may be used in liquid crystals, displays, interference filters, colour filters, holography, optical and electronic measurement and sensing systems, and are suitable for high flux applications.
R. Maurer et al, “Polarising Colour Filters made from Cholesteric LC Silicones”, SID digest, pp 110-112, 19900 discloses the use of cholesteric liquid crystal polymers for colour filters. Such filters reflect a limited bandwidth of light of one circular polarisation and transmit other light. Stacking of cholesteric colour filters makes it possible to obtain elements which transmit only a narrow band of wavelength in the visible spectrum. This technique may be used to create transmissive primary colour filters for red, green and blue suitable for use in displays. Cholesteric films may be patterned lithographically by exposing regions of the films to ultraviolet (UV) irradiation at different temperatures, for instance as disclosed in U.S. Pat. No. 4,637,896.
EP 606 940 discloses a technique for making circular polarisers by increasing the reflection bandwidth-of cholesteric films from about 50 nanometres to about 300 nanometres. In particular, a combination of diffusion and a UV intensity profile is used to increase the polariser bandwidth. EP 720 041 discloses a backlight for a liquid crystal device (LCD) using patterned cholesteric transmissive colour filters. Light reflected by the filters is recirculated and returned to the display so as to improve the efficiency of illumination. It is desirable that such colour filters work correctly for a large range of angles of incidence, for instance so as to improve the viewing angle of a display. D. J. Broer, “Molecular Architectures in Thin Plastic Films by In-Situ Photopolymerisation of Reactive Liquid Crystals”, SID 95 digest, pp 165-168, 1995, G. M. Davis “Liquid Crystal Polymer Thin Film Anisotropic Optical Components”, Sharp Technical Journal, pp 22-25, vol. 63, December 1995 and U.S. Pat. No. 4,983,479 disclose techniques for providing three dimensional control of molecular order in polymer films, for instance using photoinitiated polymerisation or cross-linking of liquid crystal molecules.
It is well known that the wavelength reflected by a single pitch cholesteric film varies with angle of incidence according to:
&lgr;(&agr;)=&lgr;
0
cos[sin
−1
(2sin&agr;
)]
where &lgr;
0
is the central wavelength for normal incidence, &lgr;(&agr;) is the centre wavelength for light incident at an angle &agr;, and n/2 is the average refractive index (n
0
+n
e
)/2, where n
0
and n
e
are the ordinary and extraordinary indices of the cholesteric material respectively. It is also known that the polarisation state of the reflected and transmitted light has a complex dependence on wavelength and angle of incidence of the illuminating light, for instance as disclosed in V. A. Belyakov et al, “Optics of Cholesteric Liquid Crystals”, Sov. Phys. Usp. 22(2), pp 63-88, Feburary 1979 and G. Joly et al, “Optical Properties of the Interface between a Twisted Liquid Crystal and an Isotropic Transparent Medium”, J. Optics, vol. 25, pp 177-186, 1994. Such variations and dependencies are undesirable for many applications, for instance of colour filters, where behaviour substantially independentof angle of incidence is desired. For graded pitch cholesteric devices in which the cholesteric pitch varies so as to increase the width of reflection bandwidth, the angular dependence is more complex. L. E. Hajdo et al, J. Opt. Soc. Am. vol. 69, no. 7, July 1979 “Theory of Light Reflection by Cholesteric Liquid Crystals Possessing a Pitch Gradient” deals only with light incident normally on the cholesteric layer.
GB-A-2 166 755 discloses a method of selectively polymerising a cholesteric liquid crystal monomer by masking the liquid crystal and curing the un-masked areas by irradiation with ultra violet light. The whole liquid crystal is irradiated. However, 3-dimensional effects arise because the liquid crystal near the surface of the irradiated areas will not be completely polymerised, since oxygen will inhibit the polymerisation. If the irradiation is carried out in air, therefore, the regions of the liquid crystal near the surface will have different properties from the polymer in the internal regions of the liquid crystal. This document does not disclose irradiating the liquid crystal in such a way that the depth to which the liquid crystal is irradiated can be controlled.
GB-A-2 132 623 discloses the production of structures whose properties have 2-dimensional variations—they vary over the surface area of the structure. A liquid crystal layer is irradiated through a first mask under a first set of conditions. The mask is then removed and the non-polymerised areas are subsequently irradiated under different conditions. This will lead to a structure in which the properties vary over the area of the structure but are constant over the depth of the structure.
EP-A-0 154 953 provides an optical filter having two separate polymer, films. The first film is polymerised under one set of conditions, and the second film is polymerised under different conditions.
EP-A-0 397 263 discloses a method of manufacturing a polariser by irradiating a liquid crystal monomer.
Multilayer cholesteric filters are disclosed in EP-A-0 720 041, U.S. Pat. No. 5,548,422, U.S. Pat. No. 4,726,663, JP-A-61 032 801 and “IBM Technical DisclosUre Bulletin” Vol 15, No 8, pp 2538-2539. These documents primarily relate to the case of normal incidence.
According to a first aspect of the invention, there is provided a method as defined in the appended claim
1
.
According to a second aspect of the invention, there is provided a filter.
According to a third aspect of the invention, there is provided a filter.
According to a fourth aspect of the invention, there is provided a filter.
It is thus possible to provide a method which allows three-dimensional structures to be formed in a polymer film as a single element or device. For instance, this method may be used to form the various filters, although such filters may less-advantageously be formed by other techniques. The structure of the film may be varied with depth to achieve a desired angular response in a cholesteric spectral filter or other device. The anisotroptic nature of liquid crystal molecules, the ability to control the orientation of these molecules, for instance by surface effects or application of electric or magnetic fields, and the ability of UV light to fix the orientation enable complex three dimensional structures to be created. For instance, single film notch filters and single film RGB transmissive colour filters may be formed.
The angular behaviour of devices such as filters may be controlled using these techniques. For instance, it is possible to provide spectral.filters which retain their performance over a wider angular range of incidence and emergence than-for known devices.
Another advantage of such cholesteric colour filters is that they may be used in systems with a large optical flux, such as projector systems. In particular, because unwanted light is reflected rather than being absorbed, the filters are subjected to less thermal stress. Thus, improved colour stability and operating life may be achieved.
REFERENCES:
patent: 4637896 (1987-01-01), Shannon
patent: 4726663 (1988-02-01), Buzak
patent: 4983479 (1991-01-01), Broer et al.
patent: 5548422 (1996-08-01), Conner et al.
patent: 5991001 (1999-11-01), Park
patent: 6061108 (2000-05-01), Anderson et al.
patent: 6133980 (2000-10-01), Faris
patent: 6181395 (2001-01-01), Li et al.
patent: 0154953 (1985-09-01), None
patent: 0397263 (1990-11-01), None
patent: 0606940 (1994-07-01), None
patent: 0720041 (1996-07-01), None
patent: 2132623 (1984-07-01), None
patent: 2166755 (1986-05-01), None
patent: 6132801 (1986-02-01), None
patent: 9723580 (1997-07-01), None
Anderson Duncan James
Blay Claire
Brown Robert George Watling
Davis Gillian Margaret
Smith Nathan
Parker Kenneth
Renner , Otto, Boisselle & Sklar, LLP
Sharp Kabushiki Kaisha
LandOfFree
Filter and method of making an optical device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Filter and method of making an optical device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Filter and method of making an optical device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2821657