Active solid-state devices (e.g. – transistors – solid-state diode – Field effect device – Having insulated electrode
Reexamination Certificate
2002-11-25
2004-07-20
Abraham, Fetsum (Department: 2826)
Active solid-state devices (e.g., transistors, solid-state diode
Field effect device
Having insulated electrode
C257S331000, C257S368000, C257S377000
Reexamination Certificate
active
06765248
ABSTRACT:
BACKGROUND OF THE INVENTION
Field of the Invention
The present application relates to a field effect transistor with a gate electrode and a method for fabricating the FET.
In the technical field of semiconductor components such as field effect transistors, it is customary and necessary to produce a conductive contact with a doped region in a semiconductor substrate. In the cell field of a semiconductor memory with dynamic cells (DRAM), in particular, two neighboring gate electrodes of two adjacent field effect transistors are disposed next to one another on the surface of a semiconductor substrate, with a doping zone disposed in the semiconductor substrate between the two gates. The surfaces and sidewalls of the two gates are respectively covered with what are known as spacers as self-aligning etch masks in order to form self-aligning contact between the two gates to the doping zone. A spacer is formed by back-etching a thin, optimally conformally deposited layer, known as a liner.
Typically, the spacers are formed from silicon nitride as envelopes around the two gates, and the gates are formed from polycrystalline silicon. The gates and the substrate are usually covered with a silicon oxide that includes vias. A selective etching between the silicon oxide layer and the silicon nitride spacer is utilized to form the vias. It is possible that the mask which serves for structuring the vias between the two gates could be misaligned, so that a via which is etched with the structured mask is formed not only between the gates but also in one of them. This is prevented by the silicon nitride spacers, because the etching of the via is guided between the two gates by the spacers, which have a substantially lower etch rate than the silicon oxide. The two gates are thus protected against contact etching by the silicon nitride spacers.
As is generally known, the gate of the field effect transistor can be formed from not just one layer but a layer sequence, also referred to as a gate stack. For instance, a gate stack contains a heavily doped polycrystalline silicon layer, which is disposed on a gate oxide, and a layer with very low resistivity, which is disposed on the polycrystalline silicon layer and contains a metal and/or a metal silicide, for instance tungsten and/or tungsten silicide.
For fabrication, a structured gate stack is usually subjected to a temperature step at an elevated temperature in an oxygen atmosphere, whereby exposed polycrystalline silicon is oxidized, forming an isolating layer, and furthermore a recrystallization of the tungsten silicide layer occurs. The disadvantage of the recrystallization of the tungsten silicide layer is that a volume enlargement of the tungsten silicide occurs because of the rearranged microscopic structure. The volume enlargement looks similar to a swelling process and extends in a bulging fashion into the via where the contact is to be formed. The bulging of the tungsten silicide layer into the via shortens the distance between the contact and the tungsten silicide layer, which can lead to shorts between the gate electrode and the contact material.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a field effect transistor and a fabrication technique that overcome the above-mentioned disadvantages of the prior art devices and methods of this general type, which has a low resistance gate and can be flawlessly fabricated.
With the foregoing and other objects in view there is provided, in accordance with the invention, a field effect transistor. The transistor contains a substrate having a surface, a first doping region, a second doping region, and a channel disposed between the first doping region and the second doping region. A gate oxide is disposed on the surface of the substrate over the channel. A gate electrode is provided and has a side wall, a first layer of polycrystalline doped silicon disposed on the gate oxide, and a second layer disposed on the first layer. An insulating spacer layer is disposed on the sidewall of the gate electrode. A contact adjoins the gate electrode and is insulated from the gate electrode by the insulating spacer layer. The contact makes contact with one of the first and second doping regions. A layer containing silicon is disposed between the gate electrode and the contact.
The layer containing silicon which is disposed between the second layer of the gate electrode and the contact plug serves as a guard layer for the second layer of the gate electrode, by which recrystallizations of the second gate electrode are reduced or prevented, for example. As a result, the volume expansion thereof can be reduced, thereby improving the safety gap between the gate stack and the contact plug.
According to an advantageous development of the field effect transistor, the layer containing silicon is either polycrystalline or amorphous.
According to another advantageous development of the inventive field effect transistor, the second electrode contains tungsten, tungsten silicide, tungsten nitride, or cobalt silicide. These materials are advantageously suitable for constructing a low-resistance gate stack, because these materials for the second gate electrode have a lower resistance than a polycrystalline doped silicon layer.
According to another advantageous development of the inventive field effect transistor, a silicon oxide layer is disposed between the layer containing silicon and the contact plug. The silicon oxide layer serves as an additional spacer and emerges in the thermal oxidation of the first gate electrode.
According to another advantageous development of the invention, a silicon nitride layer is disposed between the silicon layer and the contact plug. The additional silicon nitride layer likewise produces improved protection for the gate stack in the etching of the via. The silicon nitride layer is advantageously disposed such that it protects the region of the gate stack which is averted from the surface of the substrate and which is therefore damaged most by the etchant in the etching of the via.
With the foregoing and other objects in view there is provided, in accordance with the invention, a method for fabricating a field effect transistor. The method includes the steps of providing a substrate having a surface, forming a gate oxide on the surface, and depositing a first layer for a gate electrode on the gate oxide. The first layer contains a polycrystalline doped silicon. A second layer for the gate electrode is deposited on the first layer. The second layer is structured, leaving the first layer at least partly clear and forming a sidewall at the second layer extending substantially perpendicular to the surface of the substrate. A layer containing silicon is deposited on the sidewall of the second layer and on an exposed portion of the first layer. A structuring step is performed such that the first layer gets structured and the structuring extends into the gate oxide but leaves intact the layer containing silicon at the sidewall of the second gate electrode. A dopant is incorporated into the substrate for forming a first doping region and a second doping region. An insulating spacer layer is formed on the sidewall of the second layer and extends to the first and second doping regions. A contact is formed and adjoins the insulating spacer layer, the contact makes contact with one of the first and second doping regions.
By this technique, a field effect transistor is advantageously formed which is less susceptible to shorts between the gate stack and the contact plug. This improves the yield of produced circuits as well as the reliability of the individual circuits. At the same time, the gate has low resistivity.
According to an advantageous development of the inventive method, a thermal oxidation is carried out after the deposition of the layer containing silicon. The thermal oxidation serves for oxidizing the first gate electrode, which consists of polycrystalline silicon, at its surface, whereby an isolating layer is formed.
According to another advantageous developm
Schuster Thomas
Többen Dirk
Abraham Fetsum
Locher Ralph E.
LandOfFree
Field effect transistor and fabrication method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Field effect transistor and fabrication method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Field effect transistor and fabrication method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3205908