Active solid-state devices (e.g. – transistors – solid-state diode – Field effect device – Having insulated electrode
Reexamination Certificate
2001-05-04
2003-03-25
Wojciechowicz, Edward (Department: 2815)
Active solid-state devices (e.g., transistors, solid-state diode
Field effect device
Having insulated electrode
C257S267000, C257S280000, C257S281000, C257S473000, C257S618000, C257S623000, C438S003000, C438S161000, C438S583000, C438S694000
Reexamination Certificate
active
06538273
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a ferroelectric transistor having two source/drain regions, a channel region and a gate electrode, a layer made of ferroelectric material being provided between the gate electrode and the channel region. A change in the conductivity of the transistor is dependent on the polarization state of the layer made of ferroelectric material. Ferroelectric transistors of this type are being investigated with regard to nonvolatile memories. In this case, two different logic values of a digital information item are assigned two different polarization states of the layer made of ferroelectric material. Further possible uses for ferroelectric transistors of this type are neural networks, for example.
The problem arises with these ferroelectric transistors that ferroelectric material disposed on the surface of a semiconductor substrate exhibits poor interface properties. Furthermore, diffusion processes occur between individual constituents of the ferroelectric material and the semiconductor substrate. In order to reduce the influence of these effects on the electrical properties of a ferroelectric transistor, it has been proposed to use, between the ferroelectric layer and the semiconductor substrate, an intermediate layer made of SiO
2
, (see European Patent EP 0 566 585 B1) or made of CeO
2
, Y
2
O
3
or ZrO
2
(see, for example, the reference by T. Hirai et al., Jpn, J. Appl. Phys. Vol. 36 (1997) pages 5908 to 5911 or H. Nyung Lee et al, Ext. Abst. Int. Conf. SSDM, Hamamatsu, 1997, pages 382 to 383). These materials are insulating stable oxides which ensure a sufficiently good interface between the ferroelectric layer and the surface of the semiconductor substrate.
In the ferroelectric transistor, the intermediate layer acts as an additional capacitance which, when a voltage is applied between the gate electrode and the semiconductor substrate, reduces that part of the voltage which is dropped across the ferroelectric layer. This impairs the punch-through of a voltage present at the gate electrode to the channel region. When storing information in the ferroelectric transistor by applying a sufficiently high voltage to the ferroelectric layer, so that the polarization of the ferroelectric material is changed, only part of the applied voltage is thus dropped across the ferroelectric layer.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a ferroelectric transistor and a method for fabricating it which overcome the above-mentioned disadvantages of the prior art devices and methods of this general type, in which the punch-through of a voltage present at the gate electrode is improved compared with known solutions, without impairing the interfaces.
With the foregoing and other objects in view there is provided, in accordance with the invention, a ferroelectric transistor. The ferroelectric transistor contains a semiconductor substrate having a surface, two source/drain regions disposed in the semiconductor substrate and each having a surface, a channel region disposed between the two source/drain regions in the semiconductor substrate and having a surface, and a metallic intermediate layer disposed on the surface of the channel region and forms a Schottky diode with the semiconductor substrate. The metallic intermediate layer also has a surface. A ferroelectric layer is disposed on the surface of the metallic intermediate layer and the ferroelectric layer has a surface. A gate electrode is disposed on the surface of the ferroelectric layer.
The ferroelectric transistor has the two source/drain regions and the channel region disposed in between in the semiconductor substrate. The metallic intermediate layer is disposed on the surface of the channel region and forms a Schottky diode with the semiconductor substrate. The ferroelectric layer is disposed on the surface of the metallic intermediate layer, the gate electrode being disposed on the surface of the ferroelectric layer. The ferroelectric transistor thus has the structure of a MESFET whose gate electrode is isolated from the actual metal semiconductor contact by the ferroelectric insulator.
The memory cell can be operated for example as now described. In order to read out the information, a short voltage pulse (for example a few ns) is applied to the gate electrode of the transistor with a direction such that the Schottky contact is operated in the reverse direction. The magnitude and duration of the voltage pulse is chosen such that the pulse suffices to reverse the polarization of the ferroelectric layer (duration of the order of magnitude of ns) but, does not suffice to allow the charge &Dgr;Q corresponding to the polarization-reversal operation or the charge Q corresponding to the dielectric proportion to flow through the Schottky contact operated in the reverse direction.
The effect that can thereby be achieved is that, during the pulse duration, part of the voltage present at the gate electrode is dropped across the Schottky contact.
When a voltage pulse is applied, two cases are to be decided.
In the first case, if the polarization direction of the ferroelectric layer at the beginning of the voltage pulse is such that it is rotated by the voltage pulse, then the voltage between the gate electrode and the semiconductor will initially drop, namely for the duration of the polarization-reversal operation, and only then be constant.
In the second case, if, by contrast, at the beginning of the voltage pulse at the gate electrode, the ferroelectric layer is already polarized in the direction of the voltage, then the ferroelectric layer behaves similarly to a purely dielectric layer, that is to say the voltage dropped between the gate electrode and the semiconductor during the pulse duration &Dgr;t is constant.
If the doping in the channel region of the transistor is chosen accordingly, then it is possible, using that part of the voltage at the gate electrode which is dropped across the Schottky contact, to control the transistor, that is to say to switch the transistor on or off, depending on whether a normally off or a normally on transistor is involved.
Thus, with a normally off transistor, the quantity of charge which flows through the channel of the transistor during the pulse duration will be smaller in the first case than in the second case. The opposite is true for a normally on transistor. By integrating the quantity of charge during the pulse duration, it is possible to evaluate the stored information.
If the written information was destroyed by the read-out operation (first case), then it must subsequently be written back to the cell.
The writing or erasing of information to or in a cell can be effected by a larger voltage between the gate electrode and the semiconductor than for the read-out of information, which brings about larger currents through the Schottky contact (both in the forward direction and in the reverse direction) of the configuration, with the result that the voltage dropped across it becomes zero after a short time and the entire voltage between the electrode and the semiconductor or the metal layer (the semiconductor and metal layer are at the same potential) is dropped across the ferroelectric layer.
As an alternative, the writing or erasing of information can also be effected on a different, longer time scale than for the read-out, with the result that, during longer pulse durations, more charge can flow through the Schottky contact and, therefore, voltage is no longer dropped across the Schottky contact after a short time (for example tens of ns) in this case as well.
Further methods of operating the memory cell are possible.
Consequently, in the ferroelectric transistor, the additional capacitance between semiconductor substrate and ferroelectric layer that is present in the known ferroelectric transistors is obviated both when storing information and when erasing information. At the same time, direct contact between the ferroelectric layer and the semiconductor surface is avoided.
It lies withi
Braun Georg
Haneder Thomas
Schlösser Till
Willer Josef
Greenberg Laurence A.
Infineon - Technologies AG
Locher Ralph E.
Stemer Werner H.
Wojciechowicz Edward
LandOfFree
Ferroelectric transistor and method for fabricating it does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Ferroelectric transistor and method for fabricating it, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ferroelectric transistor and method for fabricating it will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3029785