Ferroelectric random access memory

Static information storage and retrieval – Systems using particular element – Ferroelectric

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C365S230030, C365S189070

Reexamination Certificate

active

06297986

ABSTRACT:

CROSS REFERENCE TO RELATED APPLICATION
This application claims the priority of Korean patent application Ser. No. 99-42044 filed on Sep. 30, 1999.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a ferroelectric memory device, and more particularly to a ferroelectric random access memory device fabricated using a ferroelectric material having a perovskite structure to obtain an enhanced reliability when data is read out.
2. Description of the Related Art
As well known, semiconductor memory devices are classified into volatile memory devices and non-volatile memory devices in accordance with whether or not information is lost when power is off. A dynamic random access memory (DRAM), which is a volatile memory, is configured to keep information only in a power-on state even though it has a high operating speed. Such a DRAM also has a drawback in that the consumption of power is excessive because refreshing of data should be carried out at intervals of a certain time in order to prevent data from being lost due to leakage current from a charge transfer transistor coupled to a capacitor. Meanwhile, EEPROMs and flash memories, which are non-volatile memories, have drawbacks of a low operating speed and an excessive power consumption even though data can kept in a power-off state.
On the other hand, a ferroelectric random access memory (FeRAM) has advantages in that they have an operating speed similar to that of DRAMs while exhibiting a reduced power consumption. Such an FeRAM is a non-volatile memory capable of keeping data even in a power-off state, like EEPROMs and flash memories. By virtue of these advantages, such an FeRAM has recently been recognized as a substitutive memory for DRAMs, EEPROMs, flash memories, and other semiconductor memories. In accordance with such a recognition, active research and development have been made for FeRAMs in many companies and research institutes in the world.
Such an FeRAM uses a capacitor made of a ferroelectric film, such as PZT(Pb(Zr,Ti)O
3
or SBT(SrBi
2
Ta
2
O
9
), having spontaneous polarization characteristics capable of maintaining a polarization generated in accordance with an application of a certain voltage, even after power is off. Such an FeRAM utilizes the hysteretic characteristic of a ferroelectric depicted in FIG.
1
.
Referring to
FIG. 1
, the ferroelectric is polarized when a voltage V applied to the ferroelectric is increased in a plus (+) direction, so that it exhibits a maximum polarized value Qmax at a maximum voltage. When the applied voltage is cut off, the residual polarization of the ferroelectric corresponds to “Qr”. This residual polarization value Qr corresponds to data “1”. When the voltage V is decreased in a minus (−) direction, the ferroelectric is polarized in an opposite direction, so that it exhibits a minimum polarized value Qmin at a minimum voltage. When the applied voltage is cut off in this state, the residual polarization of the ferroelectric corresponds to “−Qr”. This residual polarization value −Qr corresponds to data “0”.
Here, the “+” and “−” directions of the voltage V are indicative of different relative potential relations between the upper and lower electrodes of the capacitor, respectively. The “+”, direction means that the upper electrode has a potential relatively higher than that of the lower electrode. The “−” direction means that the upper electrode has a potential relatively lower than that of the lower electrode.
This will be described in more detail, in conjunction with
FIG. 5
which is a circuit diagram illustrating the equivalent circuit of a conventional FeRAM. In order to store data “1” in a capacitor of a unit cell UC in the circuit of
FIG. 5
, a potential, which is higher than that applied to a plate electrode, is applied to a bit line in an ON state of a charge transfer transistor, thereby causing a ferroelectric to be spontaneously polarized. After the spontaneous polarization of the ferroelectric, the charge transfer transistor is turned off, so that data “1” is stored. On the other hand, data “0” is stored by applying, to the bit line, a potential lower than the potential applied to the plate electrode in the ON state of the charge transfer transistor, thereby spontaneously polarizing the ferroelectric, and then turning off the charge transfer transistor.
When data stored in the capacitor is to be read out from the memory, the charge transfer transistor is turned off in a state in which a potential higher than that applied to the plate electrode is applied to the bit line. As a result, a charge dQ
1
is discharged into the bit line when the data stored in the capacitor is “1”. When the data stored in the capacitor is “0”, a charge dQ
0
is discharged into the bit line. That is, the potential of the bit line varies in accordance with the value of the data stored in the capacitor because the charge discharged into the bit line varies in accordance with the value of the stored data.
When the data stored in the capacitor is “1”, the potential variation V
1
of the bit line corresponds to “dQ
1
/(Cb+Cs)” (V
1
=dQ
1
/(Cb+Cs)). On the other hand, the data stored in the capacitor is “0”, the potential variation V
0
of the bit line corresponds to “dQ
0
/(Cb+Cs)” (V
0
=dQ
0
/(Cb+Cs)). Therefore, it is possible to determine the data (“1” or “0”) by comparing the potential of the bit line, outputted at an output terminal (not shown) of the memory, with a reference potential.
The conventional FeRAM shown in
FIG. 5
consists of unit cells UC each having a 1T/1C structure including one transistor and one capacitor.
Referring to
FIG. 5
, the FeRAM includes M×N unit cells. Each unit cell UC consists of one transistor (a charge transfer transistor), and one capacitor. The transistor of each unit cell UC is coupled at a gate thereof to an associated one of word lines WL
0
, WL
1
, and WL
2
, at a drain (or a source) thereof to an associated one of bit lines BL
0
and BL
1
, and at a source (a drain) thereof to one end of the capacitor included in the unit cell DC. The other end of the capacitor is connected to an associated one of plate electrode lines PL
0
, PL
1
, and PL
2
. Each bit line BL
0
or BL
1
is coupled at one end thereof to an associated one of comparators C
0
and C
1
.
The above mentioned conventional FeRAM also includes a reference voltage generating circuit. This reference voltage generating circuit includes two switching transistors ST
0
and ST
1
, and two dummy cells DC
0
and DC
1
. Each of the dummy cells DC
0
and DC
1
consists of one transistor (a charge transfer transistor), and one capacitor. Respective transistors of the dummy cells DC
0
and DC
1
are coupled at their drains (or sources) to dummy bit lines DBL and /DBL, and coupled to each other via switching transistors ST
0
and ST
1
respectively connected to the dummy bit lines DBL and /DBL, thereby forming a common output. The common output from the switching transistors ST
0
and ST
1
is coupled to the other input of each of the comparators C
0
and C
1
.
That is, each of the comparators C
0
and C
1
is coupled at one input thereof to an associated one of the bit lines BL
0
and BL
1
, and at the other input thereof to the common output of the dummy bit lines DBL and /DBL. Accordingly, each comparator C
0
or C
1
determines data (“0” or “1”) outputted from an optional unit cell UC by comparing the voltage of the unit cell UC, applied thereto via the associated bit line, with a reference voltage applied thereto from the common output of the switching transistors ST
0
and ST
1
.
Although the conventional FeRAM having the 1T/1C structure has an advantage in terms of a high integration in that it has a small unit cell size, there is a problem in that there may be a RC delay and a drop of the reference voltage because the data determination is carried out by comparing the potential of each bit line with the reference voltage transmitted from the reference voltage generating circu

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ferroelectric random access memory does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ferroelectric random access memory, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ferroelectric random access memory will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2610976

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.