Electrical computers and digital processing systems: support – Computer power control – Having power source monitoring
Utility Patent
1999-12-06
2001-01-02
Heckler, Thomas M. (Department: 2787)
Electrical computers and digital processing systems: support
Computer power control
Having power source monitoring
C714S014000, C714S047300
Utility Patent
active
06170062
ABSTRACT:
BACKGROUND OF THE INVENTION
A. Field of the Invention
This invention relates to the operation of a communication network, and more particularly relates to a method and apparatus for powering components on the communication network.
B. Description of Related Art
The universal serial bus (USB) is a protocol for a serial bus. USB supports data exchange between a host computer and a wide range of simultaneously accessible peripherals. The attached peripherals share USB bandwidth through a host scheduled token based protocol. The USB allows peripherals to be attached, configured, used and detached while the host and other peripherals are in operation.
The USB transfers signal and power over a four wire cable with two wires for power (+5 Volts) and ground and the other two wires for data signaling. The USB in one configuration is 12 megabits per second and supports up to 128 devices. One of the purposes behind the universal serial bus is to provide ease of use to add PC peripherals. The USB is designed to handle a broad range of devices such as telephones (both analog, digital, and proprietary), modems, printers, mice, joysticks, scanners, keyboards, and tablets. Therefore, removed from the personal computer are the parallel, serial, graphics, modem, sound/game and mouse ports. The USB is designed so that external devices, such as a mouse or a keyboard may be correctly detected and properly configured upon attachment. Ordinarily, the topology of the USB system is tiered star. At each star is a universal serial bus repeater providing power for the devices, routing of signals in each direction and providing terminations for each line.
The universal serial bus repeater is a device which has one upstream port, a universal serial bus controller, and several downstream ports. The upstream port is toward the host, such as connected to a computer or other data communication device, and the downstream ports is toward a device. The universal serial bus controller performs the following functions: routing of the signals from the upstream port to the downstream ports and from the downstream ports to the upstream port; and error detection and recovery. The universal serial bus controller supports two power source modes (bus-powered or self-powered). Ordinarily, if the power required for the downstream ports and embedded functions is equal to or less than the power the bus can supply, the universal serial bus controller can be powered by the bus. If the power required for the downstream ports and embedded functions is more than what the bus can supply, the universal serial bus controller and the downstream ports are self-powered.
When the universal serial bus controller is self powered, the operator of the system must follow a special sequence in configuring the system. The operator must first connect the power source for the universal serial bus controller and the downstream ports. Then, the operator must connect the universal serial bus controller to the port on the computer. Otherwise, if the bus is connected to the universal serial bus controller without the universal serial bus controller being powered, the computer may determine that there is a problem with the universal serial bus controller since the computer detects that the universal serial bus controller is connected, but it is not responding due to a lack of power. Thus, the sequence of connecting the power supply and then the connector to the bus must be followed to avoid any potential errors.
Further, all self-powered universal serial bus controllers should implement overcurrent and thermal error protection for safety reasons. The universal serial bus controller should have a way to detect faults in the system such as an overcurrent or thermal error condition and report it to the universal serial bus software. Should the aggregate current drawn by a single downstream port or group of downstream ports exceed a preset value or the thermal value of the power supply be too high, the power should be removed from the downstream ports and the condition should be reported through the universal serial bus controller to the computer. Fault detect circuits, detecting overcurrent and thermal errors, are used to protect from catastrophic device failures, software errors that turn on devices when the current budget has been exceeded, and operator actions such as shorting out the connector pins. Known overcurrent limiting methods include poly fuses, standard fuses, or a solid state switch.
Moreover, the power supply which supplies power to the universal serial bus controller and the downstream ports in the self-powered mode are designed either with expensive power switches such as power transistors or switching chips. In this manner, the power which is supplied by the power supply can be turned on upon power up or turned off when an overcurrent is detected. Also, the power can be turned on or turned off by the software on the computer through the universal serial bus controller, which is contained within the universal serial bus controller.
Finally, when the universal serial bus controller and the downstream ports are in the self-powered mode, this limits the overall operation of the system. In the event of an overcurrent thermal error or other condition which requires the power supply to be removed, the power to the universal serial bus controller is removed as well. Thus, in order to have a reliable universal serial bus system, the power to the universal serial bus controller and the downstream ports should be reliable. It would therefore be desirable to have an improved method and apparatus for powering components on the communication network.
SUMMARY OF THE INVENTION
In accordance with a first aspect of the invention, a universal serial bus apparatus is provided. The universal serial bus apparatus has a universal serial bus controller which is connected to a first power source. The universal serial bus controller is also connected to at least one downstream port, the downstream port receiving power from a second power source. The universal serial bus apparatus also includes an overcurrent detect circuit.
In accordance with a second aspect of the invention, a method of powering a universal serial bus controller and at least one port downstream of the universal serial bus controller is provided. The universal serial bus controller has one power source and the at least one port downstream of the universal serial bus controller has a second power source separate from the first power source. The method includes the step of connecting the universal serial bus controller to the first power source. Moreover, the method includes the step of checking the connection to the universal serial bus controller to determine that the universal serial bus controller is connected and is powered. The method also includes the step of connecting the second power source to the at least one downstream port. And, the method includes the step of powering the at least one downstream port via the second power source, the powering of the at least one downstream port being done after connecting the universal serial bus controller to the bus, powering the universal serial bus controller, and connecting the second power source to the at least one downstream port.
In accordance with a third aspect of the invention, a universal serial bus apparatus is provided. The universal serial bus apparatus has a universal serial bus controller, a first power source, a second power source, and a first means for determining whether the first power source or the second power source powers the universal serial bus controller, the first means connected to the first power source and the second power source.
In accordance with a fourth aspect of the invention, a method of powering a universal serial bus controller and at least one port downstream of the universal serial bus controller is provided. The method includes powering a universal serial bus controller with a first power source. The method further includes powering at least one downstream port which is connected to the universal seri
3Com Corporation
Heckler Thomas M.
McDonnell & Boehnen Hulbert & Berghoff
LandOfFree
Fault detection on dual supply system for a universal serial... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Fault detection on dual supply system for a universal serial..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fault detection on dual supply system for a universal serial... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2539685