Computer-aided design and analysis of circuits and semiconductor – Nanotechnology related integrated circuit design
Reexamination Certificate
2000-06-01
2003-06-24
Niebling, John F. (Department: 2812)
Computer-aided design and analysis of circuits and semiconductor
Nanotechnology related integrated circuit design
C716S030000, C716S030000
Reexamination Certificate
active
06584606
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to methods of analyzing I/O cell layouts for integrated circuits, where the layout includes a location and type for each I/O cell used in the integrated circuit. More specifically, this invention relates to methods of analyzing a proposed I/O cell layout at an early stage in the design of an integrated circuit to determine whether the relative arrangement of the I/O cells and the particular types of I/O cells chosen for the layout will meet design goals with respect to power bus voltage drop, electromigration and noise limits.
2. Description of Related Art
To reduce cost and speed design, integrated circuits, such as custom logic application specific integrated circuits (ASIC) chips, are usually constructed from standard elements. These elements include such items as the die size for the silicon chip, the packaging, and the input/output (I/O) circuitry.
Typically, each I/O circuit is selected by the integrated circuit designer from a library of different types of standard I/O circuits that provide desirable I/O functions. Some I/O circuits in the library will be input only, some will be output only, some will provide both input and output functionality with various testing functions, etc. Each circuit is configured similarly with respect to common connection points, such as the location of the connections to power and ground. This arrangement allows any I/O circuit (referred to as an I/O cell) to be moved into any one of numerous standardized I/O cell placement locations on a standardized silicon die (referred to as a chip image).
At an early stage of ASIC design, the chip designer selects a particular chip image suitable for the circuit of interest. As an example, a family of popular chip images includes a variety of silicon chips of increasing die sizes, each chip being configured with wiring to supply ground and power connection to multiple I/O cell placement locations, all of which are located along the four edges surrounding the perimeter of the chip. Larger peripheral chip images have more available I/O cell placement locations where the standard I/O cells can be positioned.
One important consideration for the chip designer will be the selection of a large enough chip image to accommodate all the I/O cells needed for the ASIC to communicate with other off-chip system devices. A typical ASIC design may have from 200 to more than 1000 different I/O signals, each one requiring a corresponding I/O cell to handle its I/O signal.
The available I/O cell placement locations along the perimeter of the chip are all similar so that, in theory, almost any I/O cell can be positioned there. In practice, however, not all these locations are identical and there are limits to the placement of different types of I/O cells in the available locations. For example, some locations are farther from the power supply, and have a higher resistance connection to power and/or ground. This limits the current that I/O cells positioned here may draw. Another limit relates to test circuits which can be placed only in special test circuit I/O cell slots. There are other limits on placement needed to minimize electromigration and noise.
In the design of ASIC chips, the designer usually knows the input and output requirements of the chip long before the details of the internal ASIC chip circuitry are finalized. In peripheral chip image designs, each I/O cell is connected to a particular pin extending out of the ASIC chip. Thus, positioning the I/O cells controls the design of the circuit board that the chip will be installed into. The circuit board must bring the proper input and output signals to the correct pin.
Often, the assignment of the I/O cells to their location is done very early so that related design of the circuitry connected to the ASIC can be done. Any changes made late in the design process to this early proposed I/O cell layout increases cost. It is important to be able to determine as early as possible whether the proposed layout for the I/O cells will meet all design goals.
Although the discussion above describes peripheral chip designs, in other designs, I/O cells may be placed at interior locations of the chip. Also, for any particular die, whether it provides peripheral I/O placement locations only, or permits interior I/O cell placement, there may be different packages into which the silicon chip may be mounted. The packaging may also put limits on the placement of the I/O cells on the silicon die. Throughout the discussion below the term “chip image” will be used to generally refer to this combination of a silicon die and packaging for that die. The chip image determines the limits on the placement of I/O cells on the silicon die and package combination.
An integrated circuit process technology has scaled down to smaller and smaller dimensions, particularly in the 0.25 micron size and smaller, resistance has increased in the chip power distribution network, resulting in higher IR voltage drops throughout. ASIC chip I/O counts per die have also been increasing. With more I/O cells switching, total noise increases and it has become significantly more difficult to place I/O cells in a proposed I/O cell layout that is workable. Chip voltages have also been decreasing producing lower noise margins. The increasing complexity of the on chip metal wiring has made manual IR drop calculations difficult, while the increasing frequencies of ASIC chips has made it important to decrease noise.
Although most ASIC designs are given a very comprehensive analysis of timing, test coverage, DRC and LVS, the electrical analysis of the power bus is very limited in scope. Some ASIC designs continue to fail for reasons not predicted before the design is manufactured due to the limited scope of the power bus analysis. Some of these failures have been traced to power supply compression resulting from resistive IR voltage drop and inductive di/dt noise caused by switching high speed I/Os. When power supply compression occurs it manifests itself as timing problems or functional failure caused by false switching.
The variety of die sizes and packages available for ASICs make it difficult to provide general I/O placement and electrical checking guidelines. A contributing problem is the desirability of freezing I/O cell assignments early in the design cycle to allow for the manufacturing lead time of cards or modules intended to receive the ASIC chip. As a result, I/O cell placement has heretofore been a manual process completed early in the design without significant electrical checking.
Designers have typically done this manual check based only on general noise and electromigration design guidelines. Detailed noise analysis with tools such as ASX or H-SPICE simulation has been possible, but this is a long process involving hard work and has either been done late in the design cycle or not at all.
Problems identified late in the design cycle require extensive rework including I/O cell placement changes, substituting high power I/O cells with lower power I/O cells, chip floorplanning, layout, timing and checking, all of which increases cost.
Power and ground bus electromigration checking has also typically been done manually. To shorten the time required for this activity, analysis has been done only for small areas which were thought to represent the areas of worst case electromigration. While this shortened the time required for analysis it often missed problem areas and it lacked accuracy. Power and ground bus IR drop checking was seldom done due to its complexity.
Although prior art extraction tools for doing IR voltage drop analysis and EM analysis are available, such tools can only be used late in the design process when the repair of errors is more difficult and costly. Extraction analysis is also a relatively lengthy and expensive process.
It would, therefore, be a distinct advantage to have a method and apparatus that could provide a method of analyzing I/O cell layouts for integrated circuits that can be completed quickly and
Chiu Charles S.
Libous James P.
Loughran Rory D.
Natonio Joseph
Proctor Robert A.
DeLio & Peterson LLC
Henkler Richard A.
Reynolds Kelly M.
Whitmore Stacy
LandOfFree
Fast method of I/O circuit placement and electrical rule... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Fast method of I/O circuit placement and electrical rule..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fast method of I/O circuit placement and electrical rule... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3161847