Active solid-state devices (e.g. – transistors – solid-state diode – Field effect device – Having insulated electrode
Reexamination Certificate
2005-11-14
2008-12-30
Lee, Calvin (Department: 2892)
Active solid-state devices (e.g., transistors, solid-state diode
Field effect device
Having insulated electrode
Reexamination Certificate
active
07470954
ABSTRACT:
A method and resultant device, in which metal nanoparticles are self-assembled into two-dimensional lattices. A periodic hole pattern (wells) is fabricated on a photoresist substrate, the wells having an aspect ratio of less than 0.37. The nanoparticles are synthesized within inverse micelles of a polymer, preferably a block copolymer, and are self-assembled onto the photoresist nanopatterns. The nanoparticles are selectively positioned in the holes due to the capillary forces related to the pattern geometry, with a controllable number of particles per lattice point.
REFERENCES:
Akinaga, H., S. Miyanishi, K. Tanaka, W. Van Roy, and K. Onodera, Appl. Phys. Lett. 76, 97 (2000).
Diana, F. S., S.-H. Lee, R. A. Rachel, E. J. Kramer, and P. M. Petroff, Nano Lett. 3, 891 (2003).
Gigli, G., R. Rinaldi, C. Turco, P. Visconti, R. Cingolani, and F. Cacoalli, Appl. Phys. Lett. 73, 3926 (1998).
Guo, Q., X. Teng, S. Rahman, and H. Yang, J. Am. Chem. Soc. 125, 630 (2003).
Hidber, P. C., W. Helbig, E. Kim, and G. M. Whitesides, Langmuir 12, 1375 (1996).
Hua, F., T. Cui, and Y. Lvov, Langmuir 18, 6712 (2002).
Hua, F., Y. Lvov, and T. Cui, Nano Lett. 2, 1219 (2002).
Lee, I., H. Zheng, M. F. Rubner, and P. T. Hammond, Adv. Mater. 14, 572 (2002).
Lin, X. M., R. Parthasarathy, and H. M. Jaeger, Appl. Phys. Lett. 78, 1915 (2001).
Misner, M. J., H. Skaff, T. Emrick, and T. P. Russell, Adv. Mater. 15, 221 (2003).
Palacin, S., P. C. Hidber, J.-P. Bourgoin, C. Miramond, C. Fermon, and G. M. Whitesides, Chem. Mater. 8, 1316 (1996).
Puntes, V. F., K. M. Krishnan, and A. P. Alivisatos, Science, 291, 2115 (2001).
Spatz, J. P., V. Z.-H. Chan, S. Möβmer, F.-M. Kamm, A. Plettl, P. Ziemann, and M. Möller, Adv. Mater. 14, 1827 (2002).
Spatz, J. P., S. Mössmer, C. Hartmann, M. Möller, T. Herzog, M. Krieger, H.-G. Boyen, P. Ziemann, and B. Kabius, Langmuir 16, 407 (2000).
Sun, S., C. B. Murray, D. Weller, L. Folks, and A. Moser, Science, 287, 1989 (2000).
Suzuki, K., R. A. Hogg, and Y. Arakawa, J. Appl. Phys. 85, 8349 (1999).
Werts, M. H. V., M. Lambert, J.-P. Bourgoin, and M. Brust, Nano Lett. 2, 43 (2002).
Yin, Y., Y. Lu, B. Gates, and Y. Xia, J. Am. Chem. Soc. 123, 8718 (2001).
Yokoyama, H., T. E. Mates, and E. J. Kramer, Macromolecules 33, 1888 (2000).
Zheng, H., I. Lee, M. F, Rubner, and P. T. Hammond, Adv. Mater. 14, 569 (2002).
Journal of Applied Physics, vol. 95, No. 10, dated May 15, 2004 entitled “Self-assembling nonoparticles into holographic nanopatterns”; Seung-Heon Lee, et al., pp. 5922-5925.
Badolato Antonio
Diana Frederic S.
Kramer Edward J.
Lee Seung-Heon
Petroff Pierre M.
Berliner & Associates
Lee Calvin
The Regents of the University of California
LandOfFree
Fabrication method for arranging ultra-fine particles does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Fabrication method for arranging ultra-fine particles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fabrication method for arranging ultra-fine particles will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-4048618