Computer graphics processing and selective visual display system – Display peripheral interface input device – Cursor mark position control device
Reexamination Certificate
2000-03-24
2003-07-08
Hjerpe, Richard (Department: 2674)
Computer graphics processing and selective visual display system
Display peripheral interface input device
Cursor mark position control device
C345S156000, C345S157000, C345S163000, C345S162000, C345S160000, C345S161000
Reexamination Certificate
active
06590564
ABSTRACT:
TECHNICAL FIELD
This invention relates to an ergonomically designed computer input device. More specifically, the invention relates to an ergonomically designed computer input device for supporting the hand of a user and having a user-manipulable movable ball.
BACKGROUND OF THE INVENTION
Computer input devices for entering commands into a computer are well known and currently available in a variety of configurations. Many such input devices take the form of a mouse or a trackball device. The term “mouse” is commonly used to refer to a computer input mouse design having a tracking system such as a lower mounted ball or an optical tracking system, for determining the relative movement between the mouse and a surface upon which it rests. The term “trackball device” is commonly used to refer to a computer input device having a body and a rotatable ball coupled to the body for direct manual engagement by a user when the trackball device is resting on a supporting surface. Both the mouse and the trackball device can control the cursor on a computer screen.
A mouse frequently includes a rotatable ball mounted to the bottom of a housing. When the mouse is moved over a supporting surface, encoders sense the movement of the ball and generate signals indicative of the direction and amount of that movement. The signals are supplied to a computer and used, for example, to control movement of a cursor on the screen of the computer. The cursor on the computer screen would then be moved in a direction and by an amount corresponding to the movement of the ball. In another arrangement for the mouse, an optical tracking system is used in lieu of the mechanical ball tracking system to measure movement of the mouse with respect to the supporting surface.
A trackball-type input device, on the other hand, has its rotatable ball exposed for manipulation by the user's finger(s) and/or thumb. Ball-movement signals are generated, similar to those described with a mouse, and a cursor on the computer screen is moved in a direction and by an amount corresponding to the movement of the ball. The rotatable ball may be sensed by any conventional mechanical or optical sensing system or any other desired technique. For example, if a mechanical sensing system is used, the ball may be supported on a pair of perpendicular rollers. If an optical sensing system is used, a light source may be reflected off of a portion of the ball, and an optical sensor may determine the relative movement of the ball.
Computer input devices, including the mouse and the trackball device, may also include one or more buttons and/or a wheel. Typically, depressing one of the buttons changes the state of an associated switch, which permits a user to enter various commands into the computer. The nature of the command usually depends upon the position of the cursor on the screen. A roller or wheel typically protrudes from the top of the device and is coupled to an encoder for producing a signal indicating the rotation of the wheel. That signal may be used, for example, for scrolling through a window displayed on the computer, which function was heretofore performed by moving the cursor to the window “scroll bar” and depressing a button as needed to scroll through whatever is displayed in the window. For convenience, the wheel will hereafter be referred to as a “scrolling wheel.” The buttons, trackball, and scrolling wheel may be collectively referred to as the actuators carried on the input device.
Irrespective of the type of input device employed, mouse or trackball, it is advantageous that the device be comfortable for the user to operate, especially over long periods of time. Such comfort is obtained by careful attention to ergonomic factors, particularly toward minimizing stress in the user's fingers, wrist, and forearm. Providing a comfortable computer input device can be especially challenging when one's design goal includes enhancing the function of the device over prior devices. Particularly, prior art thumb-controlled trackball devices include drawbacks relating to comfort and/or functionality preventing optimal usability. For example, existing trackball devices do not adequately support the user's thumb without restricting its motion.
Accordingly, an improved ergonomic computer input device was thus needed that overcomes drawbacks of existing designs. More specifically, an improved ergonomic thumb-controlled trackball device that maximizes comfort and functionality was thus needed.
SUMMARY OF THE INVENTION
In view of the foregoing, the present invention provides an improved computer input device that eliminates the drawbacks of the prior art.
The present invention also provides a computer input device that effectively supports the hand enabling comfortable and efficient activation of various actuators positioned on the housing by the user.
According to one aspect, the invention is directed to a computer input device that comfortably supports the hand of the user while the thumb and fingers are associated with buttons, a trackball, and a scrolling wheel carried on the device.
The present invention provides a computer input device having a housing with a finger side surface adapted for interfacing with a plurality of fingers of the hand of the user and a thumb side surface. The thumb side surface faces in a direction generally away from the finger side surface. The housing also has a base surface adapted to interface with a horizontal work surface. The housing also has an actuator having a sphere for manipulation by the thumb of the user. The sphere is mounted to the housing for rotational movement, and the sphere has an exposed portion extending from the thumb side surface. The thumb side surface in regions adjacent the exposed portion of the sphere is angularly disposed from the horizontal work surface in a lateral direction by an angle between 40 and 60 degrees. This enables the motion of the thumb to fall along the natural axis of flexion/extension when controlling the sphere to move the cursor. In another aspect, the finger side surface includes a elongated region adapted for supporting the metacarpal-phalangeal region of the hand of the user. The thumb side surface in regions adjacent the exposed portion of the sphere is angularly disposed from the elongated region of the finger side surface in a lateral direction by an angle between 75 and 100 degrees.
In yet another aspect of the present invention, a computer input device includes a housing having an upper surface, and first, second, third, fourth, and fifth actuators disposed on said upper surface. This allows the fingers to move within a natural range of motion and control the five input devices.
In another aspect of the present invention, a computer input device includes a housing and first and second input buttons on the upper surface of the housing. One input button is positioned immediately adjacent to the other input button in both lateral and longitudinal directions. This positioning allows the user to move his or her fingers between the two buttons with either a side-to-side or forward-and-back translation.
In a further aspect, a computer input device includes a housing and first and second actuators. The housing has a finger side surface adapted for interfacing with a plurality of fingers of the hand of the user and a thumb side surface. The thumb side surface faces in a direction generally away from the finger side surface. The finger side surface has a radial side edge and an ulnar side edge. Each of said first and second actuators including an input button. The input button of the first actuator has a portion located on the radial side edge. The input button of the second actuator has a portion located on the ulnar side edge. Both input buttons include a raised locating projection thereon.
Additionally, one aspect of the present invention includes a computer input device having a housing and first and second actuators. The housing includes a finger side surface, a thumb side surface, and a palm surface. The finger side surface can interface
Han Allen M.
Jacobson Melissa S.
McLoone Hugh E.
Banner & Witcoff , Ltd.
Hjerpe Richard
Microsoft Corporation
Zamani Ali
LandOfFree
Ergonomic computer input device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Ergonomic computer input device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ergonomic computer input device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3040344