Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Carbohydrate doai
Reexamination Certificate
2001-08-15
2003-11-04
Wehbe′, Anne M. (Department: 1632)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Carbohydrate doai
C435S320100, C435S325000
Reexamination Certificate
active
06642208
ABSTRACT:
TECHNICAL FIELD
The field of this invention is the modulation of NO activity, which finds application in maintaining and improving vascular function and thereby preventing or improving vascular degenerative diseases.
BACKGROUND
Atherosclerosis and vascular thrombosis are a major cause of morbidity and mortality, leading to coronary artery disease, myocardial infarction, and stroke. Atherosclerosis begins with an alteration in the endothelium, which lines the blood vessels. The endothelial alteration results in adherence of monocytes, which penetrate the endothelial lining and take up residence in the subintimal space between the endothelium and the vascular smooth muscle of the blood vessels. The monocytes absorb increasing amounts of cholesterol (largely in the form of oxidized or modified low-density lipoprotein) to form foam cells. Oxidized low-density lipoprotein (LDL) cholesterol alters the endothelium, and the underlying foam cells distort and eventually may even rupture through the endothelium.
Platelets adhere to the area of endothelial disruption and release a number of growth factors, including platelet derived growth factor (PDGF). PDGF, which is also released by foam cells and altered endothelial cells, stimulates migration and proliferation of vascular smooth muscle cells into the lesion. These smooth muscle cells release extracellular, matrix (collagen and elastin) and the lesion continues to expand. Macrophages in the lesion elaborate proteases, and the resulting cell damage creates a necrotic core filled with cellular debris and lipid. The lesion is then referred to as a “complex lesion.” Rupture of this lesion can lead to thrombosis and occlusion of the blood vessel. In the case of a coronary artery, rupture of a complex lesion may precipitate a myocardial infarction, whereas in the case of a carotid artery, stroke may ensue.
One of the treatments that cardiologists and other interventionalists employ to reopen a blood vessel which is narrowed by plaque is balloon angioplasty (approximately 300,000 coronary and 100,000 peripheral angioplasties are performed annually). Although balloon angioplasty is successful in a high percentage of the cases in opening the vessel, it unfortunately denudes the endothelium and injures the vessel in the process. This damage causes the migration and proliferation of vascular smooth muscle cells of the blood vessel into the area of injury to form a lesion, known as myointimal hyperplasia or restenosis. This new lesion leads to a recurrence of symptoms within three to six months after the angioplasty in a significant proportion of patients (30-40%).
In atherosclerosis, thrombosis and restenosis there is also a loss of normal vascular function, such that vessels tend to constrict, rather than dilate. The excessive vasoconstriction of the vessel causes further narrowing of the vessel lumen, limiting blood flow. This can cause symptoms such as angina (if a heart artery is involved), or transient cerebral ischemia (i.e. a “small stroke”, if a brain vessel is involved). This abnormal vascular function (excessive vasoconstriction or inadequate vasodilation) occurs in other disease states as well. Hypertension (high blood pressure) is caused by excessive vasoconstriction, as well as thickening, of the vessel wall, particularly in the smaller vessels of the circulation. This process may affect the lung vessels as well causing pulmonary (lung) hypertension. Other disorders known to be associated with excessive vasoconstriction, or inadequate vasodilation include transplant atherosclerosis, congestive heart failure, toxemia of pregnancy, Raynaud's phenomenon, Prinzmetal's angina (coronary vasospasm), cerebral vasospasm, hemolytic-uremia and impotence.
Because of their great prevalence and serious consequences, it is critically important to find therapies which can diminish the incidence of atherosclerosis, vascular thrombosis, restenosis, and these other disorders characterized by abnormality of vascular function and structure. Ideally, such therapies would inhibit the pathological vascular processes associated with these disorders, thereby providing prophylaxis, retarding the progression of the degenerative process, and restoring normal vasodilation.
As briefly summarized above, these pathological processes are extremely complex, involving a variety of different cells which undergo changes in their character, composition, and activity, as well as in the nature of the factors which they secrete and the receptors that are up- or down-regulated. A substance released by the endothelium, “endothelium derived relaxing factor” (EDRF), may play an important role in inhibiting these pathologic processes. EDRF is now known to be nitric oxide (NO) or a labile nitroso compound which liberates NO. (For purposes of the subject invention, unless otherwise indicated, nitric oxide (NO) shall intend nitric oxide or the labile nitroso compound which liberates NO.) This substance relaxes vascular smooth muscle, inhibits platelet aggregation, inhibits mitogenesis and proliferation of cultured vascular smooth muscle, and leukocyte adherence. Because NO is the most potent endogenous vasodilator, and because it is largely responsible for exercise-induced vasodilation in the conduit arteries, enhancement of NO synthesis could also improve exercise capacity in normal individuals and those with vascular disease. NO may have other effects, either direct or indirect, on the various cells associated with vascular walls and degenerative diseases of the vessel.
Relevant Literature
Girerd et al. (1990)
Circulation Research
67:1301-1308 report that intravenous administration of L-arginine potentiates endothelium-dependent relaxation in the hind limb of cholesterol-fed rabbits. The authors conclude that synthesis of EDRF can be increased by L-arginine in hypercholesterolemia. Rossitch et al. (1991)
J. Clin. Invest
. 87:1295-1299 report that in vitro administration of L-arginine to basilar arteries of hypercholesterolemic rabbits reverses the impairment of endothelium-dependent vasodilation and reduces vasoconstriction. They conclude that the abnormal vascular responses in hypercholesterolemic animals is due to a reversible reduction in intracellular arginine availability for metabolism to nitric oxide.
Creager et al. (1992)
J. Clin. Invest
. 90:1248-1253, report that intravenous administration of L-arginine improves endothelium-derived NO-dependent vasodilation in hypercholesterojemic patients.
Cooke et al., “Endothelial Dysfunction in Hypercholesterolemia is Corrected by L-arginine,” Endothelial Mechanisms of Vasomotor Control, eds. Drexler, Zeiher, Bassenge, and Just; Steinkopff Verlag Darmstadt, 1991, pp. 173-181, review the results of the earlier references and suggest, “If the result of these investigations may be extrapolated, exogenous administration of L-arginine (i.e., in the form of dietary supplements) might represent a therapeutic adjunct in the treatment and/or prevention of atherosclerosis”.
Cooke (1990)
Current Opinion in Cardiology
5:637-644 discusses the role of the endothelium in the atherosclerosis and restenosis, and the effect that these disorders have on endothelial function.
Cooke (1992)
J. Clin. Invest
. 90:1168-1172, describe the effect of chronic administration of oral L-arginine in hypercholesterolemic animals on atherosclerosis. This is the first demonstration that oral L-arginine supplements can improve the release of NO from the vessel wall. The increase in NO release from the vessel wall was associated with a striking reduction in atherosclerosis in hypercholesterolemic animals. This is the first evidence to support the hypothesis that increasing NO production by the vessel wall inhibits the development of atherosclerosis.
Cooke and Tsao (1992)
Current Opinion in Cardiology
7:799-804 describe the mechanism of the progression of atherosclerosis and suggest that inhibition of nitric oxide may disturb vascular homeostasis and contribute to atherogenesis.
Cooke and Santosa (1993) In: Steroid Hormones and Dysfunctional Bleeding,
Cooke John P.
Dzau Victor J.
Gibbons Gary H.
Bozicevic Field & Francis LLP
Keddie James S.
Sherwood Pamela J.
The Board of Trustees of the Leland Stanford Junior University
Wehbe′ Anne M.
LandOfFree
Enhancement of vascular function by modulation of endogenous... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Enhancement of vascular function by modulation of endogenous..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Enhancement of vascular function by modulation of endogenous... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3166070