Enhanced contrast ratio for twisted nematic liquid crystal...

Liquid crystal cells – elements and systems – Particular structure – Having significant detail of cell structure only

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C349S005000

Reexamination Certificate

active

06833894

ABSTRACT:

FIELD OF THE INVENTION
The present invention pertains generally to liquid crystal microdisplays systems and, more particularly, to achieving higher contrast in microdisplay systems having a twisted nematic cell design.
BACKGROUND OF THE INVENTION
Microdisplays are the most recent addition to the family of flat-panel displays. While microdisplays are based on a number of different techniques to generate modular light, all are based on the use of microfabrication technologies to produce a rectangular array of pixels on a semiconductor back plane. Examples of microdisplays include liquid crystal displays, field emission displays, and digital micro-mirror displays.
At present, liquid crystal display (LCD) devices have found varieties of applications as a thin full color display. The very first types of LCDs used DSM (dynamic scattering mode), but twisted nematic (TN) mode has become the standard today. Almost all active matrix drive displays use TN type LCDs. A typical TN device comprises nematic liquid crystal sandwiched between two substrates at least one of which is transparent. Transmissive TN devices comprise two glass substrates. A special surface treatment is given to each glass substrate such that the molecules are parallel to each substrate yet the director at the top of the device is perpendicular to the director at the bottom. This configuration sets up a 90° twist into the bulk of the liquid crystal, hence the name twisted nematic display. The amount of the twist can be varied by changing the treatment angle given to each substrate. Different twist angle values give significantly different optical properties. Typical twist angles range from 45° to 270° depending on application. In a typical reflective type TN display used for microdisplays, director at the bottom is rotated 45° from the director at the top. The light will pass through the liquid crystal before and after being reflected off a pixel surface on bottom substrate of the device.
The underlying principle in a normally black reflective TN display is the manipulation of polarized light. If no voltage is applied, the liquid crystal (LC) molecules of the cell are aligned parallel to the alignment surfaces. Before entering the cell, light passes through a polarizer that is aligned with the LC molecules on the top surface. When polarized light enters the cell, its polarization changes so that immediately prior to being reflected, the light has nearly circular polarization. After being reflected, the light reverses its direction and emerges from the cell in nearly the same polarization state in which it entered the cell. In a normally black TN LCD, an analyzer, rotated by 90° with respect to the polarizer, is placed in the output path of the light reflected from the LC cell. Because the analyzer is rotated 90°, light will not pass through the analyzer when the cell is in off state. In the bright state or the on state of the device, LC molecules tend to orient with the applied electric field. The light emerging from the cell is therefore rotated nearly 90° from the polarized light entering the cell. Because the exiting light is rotated close to the analyzer direction, most of the light will pass through the analyzer only when the cell is on.
Reflective LCD microdisplays are used in a many projection and virtual view applications. These applications include: multimedia front projectors, rear-projection computer monitors, rear-projection televisions, and near-to-the-eye (NTE) displays. Light valves that are reflective provide important advantages in projection displays. Controlling circuitry placed below the mirror surface does not obstruct the clear aperture. More advanced IC technology is available for substrate materials that are opaque, and a more compact system may be achieved when the reflected output beam is folded back on the input. One particular type of reflective LC technology, the liquid-crystal-on-silicon (LCoS) microdisplay, is emerging as an attractive choice for such applications. The advantage of LCoS over other reflective LC devices is that the LCoS provides high performance, high-information-content microdisplays at significantly lower cost than competing technologies.
Currently, reflective TN LCDs have sufficient brightness and contrast for use in high definition projection applications. Normally black (NB) LC modes, since they offer higher contrast with low drive voltages as compared to normally white (NW) modes, are more readily adaptable for use in such applications. Projection systems utilizing transmissive LCDs have been able to obtain very high contrast ratios because the sheet polarizer and analyzer are separated (with inherently high contrast ratio greater than 1000:1) and not limited by a polarizing beamsplitter element ubiquitous in reflective projection optical systems. Contrast ratio is the ratio of the luminance of the bright state to the luminance of the dark state of the device. This polarizing beamsplitter element used in on-axis systems has limited acceptance angle. Consequently, system brightness and contrast are limited. In an off-axis reflective projection design, light input and output paths are spatially separated (like transmissive design) and a beam splitter cube is not required. One off-axis reflective projection design obtained total contrast ratio of greater than 400:1. (M. Bone et. al., SID 5
th
Annual Flat Panel Strategic Symposium, p81, 1998).
Furthermore, the contrast ratio decreases as the viewing angle increases due to the birefringent properties of the LC. Therefore, even an off-axis design has an inherent reduction in contrast as a function of the viewing angle. In order to increase brightness, the F# of the LCD system must be reduced (the aperture must be increased). The F# is defined as 1/(2 tan (&thgr;)) where &thgr; is the half angle of the viewing cone. Unfortunately, a reduction in F# has a negative impact on the contrast of the system. Therefore, it is desirable to design an easily manufacturable TN LCD system that has improved contrast ratio performance without decreased optical performance and brightness in low F# or high brightness projection systems.
SUMMARY OF INVENTION
In projection systems utilizing reflective CMOS microdisplays or LCoS microdisplays where the polarizer and analyzer are separated (i.e. off-axis), retarder(s) or retardation film(s) or compensation film(s) are introduced in the output light path between the LCD and an analyzer, thereby yielding contrast ratios of greater than 500:1. The retarders function to alter the polarization of light reflected by the liquid crystal cell such that high contrast is obtained.
In accordance with one general aspect of the invention, there is provided a light valve for use in high contrast reflective microdisplays, comprising a twisted nematic mode reflective liquid crystal cell, a color filter positioned to accept non-polarized light incident to the light valve, a linear polarizer positioned between said color filter and said liquid crystal cell, an analyzer positioned in the path of the light reflected by said liquid crystal cell, and retarders positioned between said liquid crystal cell and said analyzer in the path of the light reflected by said liquid crystal cell. Light incident to the light valve is generally off-axis to said liquid crystal cell and said retarders function to decrease ellipticity and alter the polarization axis of light reflected by said liquid crystal cell.
In accordance with another general aspect of the invention, there is provided a light valve for use in high contrast reflective microdisplays, comprising a twisted nematic mode reflective liquid crystal cell, a color filter positioned to accept non-polarized light incident to the light valve, a linear polarizer positioned between said color filter and said liquid crystal cell, an analyzer positioned in the path of the light reflected by said liquid crystal cell; and a single retarder positioned between said liquid crystal cell and said analyzer in the path of the light reflected by said liquid crystal cell.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Enhanced contrast ratio for twisted nematic liquid crystal... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Enhanced contrast ratio for twisted nematic liquid crystal..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Enhanced contrast ratio for twisted nematic liquid crystal... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3272416

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.