Emergency dump apparatus for buoyancy air tanks on buoyant...

Hydraulic and earth engineering – Marine structure or fabrication thereof – With anchoring of structure to marine floor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C405S224200, C405S211000, C166S350000, C166S364000

Reexamination Certificate

active

06193441

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a novel apparatus for quickly releasing the air from buoyancy tanks or housings in those situations when a quick deballasting of the buoyancy tanks or housings is required. A typical situation where this might occur is the case of a free-standing drilling riser that replaces most of the rig tension with positive buoyancy provided by buoyancy tanks or housings mounted on the riser sections. In the event of a catastrophic riser failure, i.e., where the riser below the buoyancy tanks or housings has parted or a bottom release in a dynamically positioned vessel drive off, the positively buoyant riser sections with attached buoyancy tanks or housings would ascend to the surface with increasing velocity to impact the drilling rig's or ship's hull with sufficient force to seriously damage the drilling rig. In the extreme case, the impact of the riser and buoyancy tank or buoyancy housing could sufficiently damage the drilling rig or ship to cause it to sink and lives to be lost.
The use of such positively buoyant risers with buoyancy tanks or housings providing the buoyancy is well known to those of ordinary skill in the art. Typical use dictates several riser sections will have buoyancy tanks or housings attached, depending on the water depth, to leave the riser disconnected and free standing or at least minimize the load on the rig's tensioner system while connected. The buoyancy tanks or housings are usually constructed with an open lower end to facilitate filling of the buoyancy tanks or housings by compressed air or other suitable gas. The volume and pressure of the supplied compressed air is determined by the water depth in which the buoyancy tanks or housings are to be used. Various methods of filling the buoyancy tank or housings either individually or in groups are well known to those of ordinary skill in the art.
Once the riser sections with attached buoyancy tanks or housings are in place the present invention has particular applicability. In the event the riser should fail as noted above, a particularly hazardous situation is presented by the positively buoyant tanks or housings. The present invention minimizes this hazardous situation by allowing a means to vent or deballast the buoyancy tank or housings in a few seconds. It is the rapid venting or deballasting of these buoyancy tanks or housings to which the present invention most closely applies.
2. Description of Related Art
A marine riser with open bottom air cans is shown in U.S. Pat. No. 4,099,560 (Fischer et al.) The apparatus shown by Fischer et al. discloses an air dump valve attached to a tether line that is activated in the event of the riser parting.
U.S. Pat. No. 4,176,986 to Taft et al. discloses another type of riser system with buoyancy tanks attached. A dump valve for rapidly venting the compressed air and controlled by a pilot valve assembly is shown.
Another marine riser with buoyancy system is disclosed in U.S. Pat. No. 4,422,801 (Hale et al.) The system shown by Hale et al. uses a quarter turn ball valve actuated by a trigger cable and air cylinder to vent the buoyancy air tanks.
U.S. Pat. No. 4,646,840 to Bartholomew et al., owned by the assignee of the current invention, discloses a buoyancy tank or housing system with a cascading system for supplying air to the buoyancy tank or housings.
All these systems are too slow for a dynamically positioned vessel that must vent in less than thirty seconds to avoid damage to the drilling vessel.
SUMMARY OF THE INVENTION
The current invention uses a frangible joint or connection to allow for rapid venting of the compressed air and deballasting of a buoyancy tank or housing in a positively buoyant riser system in the event of a riser section parting. The rapid venting of the compressed air ensures that the riser section cannot rapidly ascend to the surface and damage the drill rig positioned above.
According to the present invention, in a first embodiment the buoyancy tank or housing includes a vertical channel positioned on its exterior. A cover plate is placed over the vertical channel and sealed in place by a frangible weld. The cover plate includes an arm extending radially outwardly to which a tether line is anchored. The tether line extends downwardly to similarly positioned arms on the subsequent riser sections and the associated buoyancy tanks or housings. The tether line extends from all or selected buoyancy tanks to the lowermost buoyancy tank or housing and is anchored on the BOP stack below. Tether lines can extend downwardly from individual buoyancy tanks or housings or from a series of buoyancy tanks or housings. In the event of a catastrophic parting of the riser, as the riser sections and attached buoyancy tanks or housings begin ascending, the tether line is drawn tight. Further ascension of the buoyancy tanks or housings, causes the frangible weld joints to break and peel back the cover plate, exposing the vertical channels. This causes an immediate and complete venting of the air in the buoyancy tanks or housings, rendering them negatively buoyant.
In a second embodiment of the invention, the buoyancy tank or housing includes a circumferentially shaped channel positioned on its upper face. An annularly shaped cover plate is placed over the circumferentially shaped channel and sealed in place by a frangible weld. The annularly shaped cover plate includes a ring positioned on its lower face to which a tether line is anchored. The tether line extends downwardly to similarly positioned rings on the subsequent riser sections and buoyancy tanks or housings. The tether line extends from the lowermost buoyancy tank or housing and is anchored on the BOP stack below. In the event of a catastrophic parting of the riser, as the riser sections and attached buoyancy tanks or housings begin ascending, the tether line is drawn tight. Further ascension of the buoyancy tanks or housings, causes the frangible weld joints to break and peel back the cover plate, exposing the circumferentially shaped channels. This causes an immediate and complete venting of the buoyancy tanks or housings, rendering them negatively buoyant.
In a third embodiment of the invention, the buoyancy tank or housing includes an annularly shaped flange positioned on the top. The annularly shaped flange has a weld joint on its interior and a seal on its exterior to seal against the riser sections and buoyancy tank or housing, respectively. The flange is retained by a plurality of toggle retainer clamps. The toggle retainer clamps are connected to a tether line that extends from the lowermost buoyancy tank or housing and is anchored on the BOP stack below. In the event of a catastrophic parting of the riser, the parting of the riser causes the tether line to release frangible retainer pins holding the toggle retainer clamps thereby releasing the annularly shaped flange from the buoyancy housing. This causes an immediate and complete venting of the buoyancy tanks or housings, rendering them negatively buoyant.
In a fourth embodiment of the invention, the buoyancy tank or housing includes an annularly shaped flange positioned on the top. The annularly shaped flange has a weld joint on its interior and a seal on its exterior to seal against the riser sections and buoyancy tank or housing, respectively. The flange is retained by a plurality of retainer pin assemblies. The retainer pin assemblies are connected to a tether line that extends from the lowermost buoyancy tank or housing and is anchored on the BOP stack below. In the event of a catastrophic parting of the riser, the parting of the riser causes the tether line to release removable retainer pins thereby releasing the annularly shaped flange from the buoyancy tank or housing. This causes an immediate and complete venting of the buoyancy tanks or housings, rendering them negatively buoyant.
In a fifth embodiment of the invention, the buoyancy tank or housing includes an annularly shaped flange positioned on the top. The annularly shaped flange

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Emergency dump apparatus for buoyancy air tanks on buoyant... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Emergency dump apparatus for buoyancy air tanks on buoyant..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Emergency dump apparatus for buoyancy air tanks on buoyant... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2593710

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.