Surgery – Instruments – Surgical mesh – connector – clip – clamp or band
Reexamination Certificate
2000-06-01
2003-02-04
Thaler, Michael H. (Department: 3731)
Surgery
Instruments
Surgical mesh, connector, clip, clamp or band
C606S108000
Reexamination Certificate
active
06514264
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a medical device for placing an embolic coil at a preselected location within a vessel of the human body, and more particularly, relates to a catheter having a distal tip for retaining an embolic coil in order to transport the coil to a preselected position within the vessel and a control mechanism for releasing the embolic coil at the preselected position. This device is particularly suited to transport an embolic coil through the tortuous vasculature of the human brain.
2. Description of the Prior Art
For many years flexible catheters have been used to place various devices within the vessels of the human body. Such devices include dilatation balloons, radiopaque fluids, liquid medications and various types of occlusion devices such as balloons and embolic coils. Examples of such catheter devices are disclosed in U.S. Pat. No. 5,108,407, entitled “Method And Apparatus For Placement Of An Embolic Coil”; U.S. Pat. No. 5,122,136, entitled, “Endovascular Electrolytically Detachable Guidewire Tip For The Electroformation of Thrombus In Arteries, Veins, Aneurysms, Vascular Malformations And Arteriovenous Fistulas.” These patents disclose devices for delivering embolic coils to preselected positions within vessels of the human body in order to treat aneurysms, or alternatively, to occlude blood vessels at a particular location.
Coils which are placed in vessels may take the form of helically wound coils, or alternatively, may be random wound coils, coils wound within coils or many other such coil configurations. Examples of various coil configurations are disclosed in U.S. Pat. No. 5,334,210, entitled, “Vascular Occlusion Assembly; U.S. Pat. No. 5,382,259, entitled, “Vasoocclusion Coil With Attached Tubular Woven or Braided Fibrous Covering.” Embolic coils are generally formed of a radiopaque metallic materials, such as platinum, gold, tungsten or alloys of these metals. Often times several coils are placed at a given location in order to occlude the flow of blood through the vessel by promoting thrombus formation at the particular location.
In the past, embolic coils have been placed within the distal end of the catheter. When the distal end of the catheter is properly positioned the coil may then be pushed out of the end of the catheter with a guidewire in order to release the coil at the desired location. This procedure of placement of the embolic coil is conducted under fluoroscopic visualization such that the movement of the coil through the vasculature of the body may be monitored and the coil may be placed in the desired location. With these placements systems there is very little control over the exact placement of the coil since the coil may be ejected to a position some distance beyond the end of the catheter. As is apparent, with these latter systems, when the coil has been released from the catheter it is difficult, if not impossible, to retrieve the coil or to reposition the coil.
Numerous procedures have been developed to enable more accurate positioning of coils within a vessel. Still another such procedure involves the use of a glue or solder for attaching the embolic coil to a guidewire, which is in turn, placed within a flexible catheter for positioning the coil within the vessel at a preselected position. Once the coil is at the desired position, the coil is held in position by the catheter and the guidewire is pulled from the proximal end of the catheter to thereby cause the coil to become detached from the guidewire and released from the catheter. Such a coil positioning system is disclosed in U.S. Pat. 5,263,964, entitled, “Coaxial Traction Detachment Apparatus And Method.”
Another coil positioning system utilizes a catheter having a socket at the distal end of the catheter for retaining a ball which is bonded to the proximal end of the coil. The ball, which is larger in diameter than the outside diameter of the coil, is placed in a socket within the lumen at the distal end of the catheter and the catheter is then moved into a vessel in order to place the coil at a desired position. Once the position is reached, a pusher wire with a piston at the end thereof is pushed distally from the proximal end of the catheter to thereby push the ball out of the socket in order to thereby release the coil at the desired position. Such a system is disclosed in U.S. Pat. No. 5,350,397, entitled, “Axially Detachable Embolic Coil Assembly.” One problem with this type of coil placement system which utilizes a pusher wire which extends through the entire length of the catheter and which is sufficiently stiff to push an attachment ball out of engagement with the socket at the distal end of the catheter is that the pusher wire inherently causes the catheter to be too stiff with the result that it is very difficult to guide the catheter through the vasculature of the body.
Another method for placing an embolic coil is that of utilizing a heat releasable adhesive bond for retaining the coil at the distal end of the catheter. One such system uses laser energy which is transmitted through a fiber optic cable in order to apply heat to the adhesive bond in order to release the coil from the end of the catheter. Such a method is disclosed in U.S. Pat. No. 5,108,407, entitled, “Method And Apparatus For Placement Of An Embolic Coil.” Such a system also suffers from the problem of having a separate fiber optic element which extends throughout the length of the catheter with resulting stiffness to the catheter.
Still another coil deployment system incorporates a catheter having a lumen throughout the length of the catheter and a distal tip for retaining the coil for positioning the coil at a preselected site. The distal tip of the catheter is formed of a material which exhibits the characteristic that when the lumen of the catheter is pressurized the distal tip radially expands to release the coil at the preselected site. Such a deployment system is disclosed in the parent patent application, U.S. patent application Ser. No. 09/177,848, filed on Oct. 22, 1998, now U.S. Pat. No. 6,113,662 and entitled, “Embolic Coil Hydraulic Deployment System,” assigned to the assignee of the present patent application.
A still further coil deployment system comprising a similar catheter having a distal tip which radially expands to release the coil at a preselected location, however in this system the embolic coil is mounted on a headpiece which extends out of the proximal section of the coil and is in turn disposed in the lumen of the distal tip of the catheter. When the headpiece is released, the headpiece and attached coil then become deployed at the preselected site. Such a deployment system is disclosed in co-pending U.S. Patent Application filed on May 30, 2000 and entitled, “Small Diameter Embolic Coil Hydraulic Deployment System,” and assigned to the same assignee as the present patent application.
It has been found that prior to introducing the catheter deployment system into the body it may be desirable to purge air from the catheter to prevent air from being introduced into a vessel. Such a procedure has been used to purge air from the balloon catheter prior to inserting the balloon catheter into a vessel. An example of such a device is shown in U.S. Pat. No. 5,728,065 to Follmer, et al. which discloses a balloon catheter with a vent hole disposed near the distal end of the balloon. The vent hole normally lays against the surface of an inner tubular member, preventing gases from entering the balloon. During purging, the balloon is inflated, the distal end of the balloon opens exposing the vent hole, and gases and a portion of the inflation medium flow out. Another example is shown in U.S. Pat. No. 4,811,737 to Rydell which discloses a balloon catheter with a slit in the distal portion of the tubular member. Fluid is injected into the catheter and flows through multiple inflation ports to expand the balloon. The purging fluid forces the air within the balloon through the slit in the tubular member.
U.S. patent
Cordis Neurovascular Inc.
Thaler Michael H.
LandOfFree
Embolic coil hydraulic deployment system with purge mechanism does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Embolic coil hydraulic deployment system with purge mechanism, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Embolic coil hydraulic deployment system with purge mechanism will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3145816