Electrical computers and digital data processing systems: input/ – Intrasystem connection
Reexamination Certificate
1999-03-03
2001-07-10
Etienne, Ario (Department: 2155)
Electrical computers and digital data processing systems: input/
Intrasystem connection
C710S104000, C710S120000, C712S032000, C712S036000, C326S039000
Reexamination Certificate
active
06260087
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to designing integrated circuits (“ICs”) and, more particularly, to the design of Application Specific Integrated Circuits (“ASICs”).
2. Description of the Prior Art
ASICs are used extensively throughout digital computers and other types of electronic circuits. For example, ASIC System Logic Controller (“SLC”) ICs perform various functions essential to a digital computer's operation including, in many instances, interfacing between a high-speed CPU bus and a slower speed Input/output (“I/O”) bus. Similarly, an ASIC super I/O IC, which is coupled to a digital computer's slower speed I/O bus, provides one or more serial ports, one or more parallel ports, a floppy diskette drive controller, and an interface for an Integrated Drive Electronics (“IDE”) hard disk drive. Via a Small Computer System Interface (“SCSI”) bus, ASICs also interface between a digital computer system's bus and a peripheral device, such as a disk drive, a printer, a scanner, a tape drive, a CD ROM drive or an optical storage drive. Computer display controller cards; Video on Demand set-top boxes; communication network systems such as 10BaseT, 100BaseT and Gigabit Ethernet hubs, switches and routers; industrial embedded controllers such as those used in automobiles, process monitoring and control, portable and cellular telephones, games and household appliances; as well as special purpose systems used to access the Internet all use ASICs.
Because ASICs provide a truly cost-effective way of implementing a large number of digital logic circuits to perform a particular function, ASIC designers and IC fabricators have developed certain techniques for reducing the difficulty, expense and time required to design and debug an ASIC, and to manufacture the ASIC in quantity. One technique to facilitate implementing ASICs is known as a Gate Array. Using a Gate Array, an ASIC designer merely specifies interconnections among individual digital logic circuits arranged in a pre-specified two-dimensional array of logic gates. Alternatively, a designer may specify an ASIC by selecting Standard Cells from among a library of cells provided by an IC fabricator, specifying the location for Standard Cells on an IC chip, and specifying interconnections among the selected Standard Cells.
Because experience has established that ASICs are cost-effective, the number of circuits included in and the complexity of ASIC designs increases year by year. Obviously, increasing ASIC complexity increases the likelihood of design errors in engineering prototypes, and also increases the number of iterations required to obtain a design that is commercially practical.
Moreover, not only are ASIC designs becoming ever more complex, ASIC fabrication techniques are also advancing year by year. In the foreseeable future, ASIC geometry will decreases from 0.35 micron feature size to 0.25 micron, 0.18 micron or even smaller feature size, while the size of IC wafers used for ASIC fabrication will concurrently increase in diameter from 6 inches to 8 inches, and to 12 inches. More complex ASIC designs will also require increasing the number of metalization layers from the 2 or 3 layers used at present to 5 or more layers of metalization. Fabricating each layer of metalization requires a different IC mask. The compounding effects of using ever smaller feature size on ever larger diameter IC wafers with an increasing number of metalization layers will significantly increase the Non-Recurring Expense (“NRE”) of ASIC design, debugging and development.
For example, in the future the price of masks used in ASIC fabrication will increase from $2,000 per mask at present for 0.8 micron feature size geometry on a 6 inch diameter wafer to $10,000 per mask for 0.35 micron feature size geometry on an 8 inch diameter wafer. Consequently, because an average of seventeen (17) to thirty (30) masks will, in general, be required to fabricate future ASICs, NRE for each engineering prototype run will increase from $50,000 to $90,000 at present to perhaps $250,000 in the foreseeable future. An anticipated increase in wafer diameter from 8 inches to 12 inches will further increase the NRE for fabricating engineering prototypes.
Compounding all of the preceding technological considerations, that will surely increase the NRE of ASIC engineering, is the business reality that product life cycles continue to decrease. Traditional 4 to 8 week turn-arounds for fabricating an ASIC engineering prototype combined with 12 to 14 week lead times for ASIC production are becoming too long for product life cycles. Ever decreasing product life cycles in comparison with an ASIC's production cycle makes ASIC inventory control more difficult. For example, a particular ASIC design may become obsolete before exhausting a conventional three month inventory of the ASIC product.
There exist alternative ICs which digital logic designers may, in some instances, substitute for an ASIC. These alternatives, some of which are known as Field Programmable Gate Arrays (“FPGAs”), Programmable Array Logic (“PALs”),or Gate Array Logic (“GALs”), permit a digital logic designer to electronically program an IC to perform an application specific digital logic function. Moreover, some of these devices are electronically re-programmable, which, obviously, dramatically shortens the time for, and expense of fabricating and debugging a prototype ASIC. Consequently, electronically creating an ASIC by merely programming a standard IC appears highly desirable in comparison with physically manufacturing an ASIC. Unfortunately, in many instances presently available programmable logic devices such as FPGAs, PALs and GALs prove excessively expensive, particularly for high-volume products. Moreover, such ICs cannot, in general, provide a circuit density and/or circuit performance comparable to those readily obtainable using ASICs, i.e. levels of circuit density and/or performance that are necessary to produce a state-of-the-art product.
To address the preceding difficulties in ASIC prototype fabrication, Laser Programmable Gate Arrays (“LPGA”) have been developed which permits prototyping an ASIC in one day. However, LPGAs are suitable only for low volume ASIC production, while mass production requires conventional ASIC fabrication. Moreover, because a LPGA is a Gate Array, it cannot provide the circuit density of a conventional ASIC, nor can it achieve an ASIC's electrical performance. Moreover, laser ASIC prototyping appears to require complicated, expensive, high-precision prototyping equipment that must be located in a centralized facility to which designs are transmitted for prototype fabrication. Finally, it appears that it will be difficult for laser prototyping to effectively and fully exploit the small feature size that foreseeable ASICs will employ, or large number of devices which such ICs will provide. Thus, while ASIC prototype fabrication using LPGAs, in some instances, offers an improvement over conventional ASIC prototype fabrication, the NRE still remains costly in comparison with directly re-programmable FPGAS, PALs or GALS, and implementing an ASIC using a LPGA remains less convenient and more opaque to IC designers than directly programmable devices.
To obviate the preceding difficulties in ASIC design U.S. Pat. No. 5,687,325 discloses an application specific field programmable gate array (“ASFPGA”) that includes at least two fixed functional units in a single IC chip. Depending upon a specific application for the ASFPGA, the fixed functional units may include one or more bus interfaces, event timers, an interrupt controller, a Direct Memory Access (“DMA”) controller, system timers, a realtime clock, a Random Access Memory (“RAM”), a clock synthesizer, a RAM Digital-to-Analog Converter (“DAC”), a display interface, a register file, a compressed image encoder/decoder (“CODEC”), a micro-controller, or similar functional units. The ASFPGA also includes a general purpose field programmable gate array
Etienne Ario
Schreiber Esq. D. E.
LandOfFree
Embedded configurable logic ASIC does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Embedded configurable logic ASIC, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Embedded configurable logic ASIC will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2451984