Electronic device manufacture

Radiation imagery chemistry: process – composition – or product th – Imaging affecting physical property of radiation sensitive... – Making electrical device

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S313000, C430S314000, C430S317000, C438S780000, C438S781000, C438S790000

Reexamination Certificate

active

06667147

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to the field of manufacture of electronic devices. In particular, the present invention relates to the manufacture of integrated circuits containing low dielectric constant material.
As electronic devices become smaller, there is a continuing desire in the electronics industry to increase the circuit density in electronic components, e.g., integrated circuits, circuit boards, multichip modules, chip test devices, and the like without degrading electrical performance, e.g., crosstalk or capacitive coupling, and also to increase the speed of signal propagation in these components. One method of accomplishing these goals is to reduce the dielectric constant of the interlayer, or intermetal, insulating material used in the components. A method for reducing the dielectric constant of such interlayer, or intermetal, insulating material is to incorporate within the insulating film very small, uniformly dispersed pores or voids.
A variety of organic and inorganic dielectric materials are known in the art in the manufacture of electronic devices, particularly integrated circuits. Suitable inorganic dielectric materials include silicon dioxide and organo polysilicas. Suitable organic dielectric materials include thermosets such as polyimides, polyarylene ethers, polyarylenes, polycyanurates, polybenzazoles, benzocyclobutenes and the like.
In general, porous dielectric materials are prepared by first incorporating a removable porogen into a B-staged dielectric material, disposing the B-staged dielectric material containing the removable porogen onto a substrate, curing the B-staged dielectric material and then removing the polymer to form a porous dielectric material. For example, U.S. Pat. No. 5,895,263 (Carter et al.) discloses a process for forming an integrated circuit containing porous organo polysilica dielectric material. U.S. Pat. No. 6,093,636 (Carter et al.) discloses a process for forming an integrated circuit containing porous thermoset dielectric material. In each of these patents, the process described requires the step of forming the porous dielectric material prior to any subsequent processing steps.
Porous dielectric materials have a reduced, and possibly substantially reduced, dielectric constant as compared to the same dielectric materials without the presence of pores. However, in certain circumstances, the presence of such pores are problematic. For example, apertures etched into such porous dielectric materials suffer from sidewall roughness due to the pores or voids in the dielectric material. Such sidewall roughness creates difficulties in the subsequent deposition of metal layers such as barrier or seed layers. The barrier or seed layers are typically chemically or physically vapor deposited in a line of sight fashion. Thus, roughness in the aperture sidewalls tends to create discontinuities in the barrier and/or seed layers. These discontinuities can adversely affect subsequent processing steps in the manufacture of and the performance of electronic devices.
There is thus a need for processes for manufacturing electronic devices including porous dielectric materials having barrier and/or seed layers that are substantially continuous in the apertures.
SUMMARY OF THE INVENTION
It has been surprisingly found that the process of the present invention provides electronic devices having substantially continuous, and preferably continuous metal layers, preferably barrier and/or seed layers, in apertures etched into porous dielectric materials.
In one aspect, the present invention provides a method for producing an electronic device including the steps of: a) disposing on a substrate surface a B-staged dielectric matrix composition comprising one or more dielectric matrix materials and a removable porogen; b) curing the B-staged dielectric matrix composition to form a dielectric matrix material without substantially removing the porogen; c) patterning the dielectric matrix material; d) depositing a metal layer on the surface of the dielectric material; and then e) subjecting the dielectric matrix material to conditions which at least partially remove the porogen to form a porous dielectric material layer without substantially degrading the dielectric material.
In a second aspect, the present invention provides a method for producing an electronic device including the steps of: a) disposing on a substrate surface a B-staged dielectric matrix composition including one or more dielectric matrix materials and a removable porogen; b) curing the B-staged dielectric matrix composition to form a dielectric matrix material without substantially removing the porogen; c) patterning the dielectric matrix material; d) depositing at least one of a barrier layer or seed layer on the surface of the dielectric material; e) depositing an aperture fill metal layer; f) planarizing the aperture fill metal layer; and g) subjecting the dielectric matrix material to conditions which at least partially remove the porogen to form a porous dielectric material layer without substantially degrading the dielectric material.
In a third aspect, the present invention provides a method for manufacturing an electronic device including the steps of: a) disposing on a substrate surface a B-staged dielectric matrix composition including one or more dielectric matrix materials and a removable porogen; b) curing the B-staged dielectric matrix composition to form a dielectric matrix material without substantially removing the porogen; c) patterning the dielectric matrix material; d) depositing a metal layer on the surface of the dielectric material; e) subjecting the dielectric matrix material to conditions which at least partially remove the porogen to form a porous dielectric material layer without substantially degrading the dielectric material; and f) subjecting the porous dielectric layer to subsequent processing steps, wherein the porous dielectric layer is free of an added cap layer.
In a fourth aspect, the present invention provides an electronic device including a porous dielectric layer free of an added cap layer.


REFERENCES:
patent: 5756021 (1998-05-01), Hedrick et al.
patent: 5767014 (1998-06-01), Hawker et al.
patent: 6171945 (2001-01-01), Mandal et al.
patent: 6352917 (2002-03-01), Gupta et al.
patent: 2002/0074659 (2002-06-01), Dalton et al.
patent: 0 838 853 (1998-04-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electronic device manufacture does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electronic device manufacture, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electronic device manufacture will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3183690

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.