Electronic component desired voltage level comparison

Electrical computers and digital processing systems: support – Computer power control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C710S014000

Reexamination Certificate

active

06272643

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention in general relates to a supply of power to electronic system components and in particular to a comparison of the desired voltage levels of that supply.
2. Description of the Related Art
Computer systems are information handling electronic systems which can be designed to give independent computing power to one user or a plurality of users. Computer systems may be found in many forms including, for example, mainframes, minicomputers, workstations, servers, personal computers, internet terminals, notebooks, and embedded systems. Personal computer (PC) systems, such as the International Business Machines (IBM) (tm) compatible PC systems, include desk top, floor standing, or portable versions. A typical PC system includes a processor, associated memory and control logic, and a number of peripheral devices that provide input and output for the system. Such peripheral devices often include display monitors, keyboards, mouse-type input devices, floppy and hard disk drives, CD-ROM drives, printers, network capability cards, terminal devices, modems, televisions, sound devices, voice recognition devices, electronic pen devices, and mass storage devices such as tape drives, CD-R drives, or DVDs. Other types of computer systems may also include similar devices as well.
Computer systems and other types of electronic systems employ power supplies to provide power for a system within required parameters. Some types of power supplies convert alternating current (AC) power to direct current (DC) power at regulated voltage levels required by the system for proper operation. Such voltage levels may include +/−12 VDC, +/−5 VDC, and +/−3.3 VDC. Some power supplies convert DC power having a first set of parameters to DC power having a second set of parameters. Some power supplies utilize batteries as the original power source.
Computer system components such as processors, memory devices, and other electronic circuits require power at specific voltage levels or ranges in order to operate properly. To ensure that the proper voltage level is provided, some components of a system may provide a voltage level indication signal to the power supply to indicate a desired voltage level for the supply of power to the component and, in some cases, other components of the system. An example of one such system is found in the patent application entitled “Voltage Supply Regulation Using Master/Slave Timer Circuit Modulation,” inventor Alan E. Brown, Ser. No. 08/991,087, filed on Dec. 15, 1997, and having a common assignee, all of which is hereby incorporated by reference in its entirety.
For some electronic systems, it is economically desirable to limit the number of power supplies in the system. Accordingly, power for multiple components may be supplied from a single power supply. With such systems, proper design and manufacture techniques can usually ensure that all components of the system require the same voltage levels of power. However, the practical realities of today's computer industry are of low cost part assembly stores and frequent component upgrades. With such realities, compatibility of voltage requirements are not always assured. Such voltage level requirement miss-matches can lead to component substandard performance or component failure. An example of a system where a problem may occur is with multiprocessor computers where the different processors may have different desired voltage levels for the supply of power to each processor.
What is needed is a circuit to compare the desired voltage levels of different components and to provide indications of those comparisons in order to prevent damage to components in the event of non equivalent desired voltage levels.
SUMMARY OF THE INVENTION
It has been discovered that a circuit that compares the desired voltage levels of power for components of an electronic system and provides an indication of the comparison can achieve numerous advantages. One advantage is that such an indication can be used to disable the supply of power to electronic components of a system if an indication of non equivalency is provided. It can also be used to provide a visual indication of such a condition. If the desired voltage levels are equivalent, an indication of an equivalent desired voltage level can be provided to a power supply to power multiple electronic components from the power supply at an equivalent desired voltage level.
In one aspect of the invention, a computer system includes a plurality of computer components and a comparison circuit having a plurality of inputs. Each input is for receiving an indication signal indicating a desired voltage level of power for a respective computer component. The comparison circuit also has an output. The computer system also includes a power supply configured to supply power to the respective computer components. The comparison circuit provides at its output a disable signal to disable the power supply from supplying power to the respective computer components as a result of a non equivalency in the desired voltage levels as determined by the comparison circuit.
In another aspect of the invention, a computer system includes means for receiving a plurality of indications, each indicating a desired voltage level of power for a respective computer component. The computer system also includes means for disabling a supply of power to the respective computer components as a result of a non equivalency in the desired voltage levels.
In another aspect of the invention, a method for comparing desired voltage levels of electronic components includes receiving a plurality of indication signals. Each indication signal received indicates a desired voltage level of power for a respective electronic component. The method also includes comparing the desired voltage levels of the indication signals received and disabling a power supply from supplying power to the respective electronic components as result of a non equivalency in the desired voltage levels as determined by the comparison.
In another aspect of the invention, a comparison circuit includes a first input for receiving a first indication signal indicating a desired voltage level of power for a first electronic component and a second input for receiving a second indication signal indicating a desired voltage level of power for a second electronic component. The comparison circuit also includes an output for providing an output indication signal indicating an equivalent desired voltage level as a result of a determination that the desired voltage levels are equivalent.


REFERENCES:
patent: 5485576 (1996-01-01), Fee et al.
patent: 5502838 (1996-03-01), Kikinis
patent: 5754445 (1998-05-01), Jouper et al.
patent: 5774736 (1998-06-01), Wright et al.
Alan E. Brown, “Voltage Supply Regulation Using Master/Slave Timer Circuit Modulation”, Dec. 15, 1997, 08/991,087, 24 pages, 3 sheets of drawings (Figs. 1-4g), Copy Not Enclosed.
Alan E. Brown, “Voltage Mode Control For A Multiphase DC Power Regulator”, Apr. 3, 1997, 08/832,254, 28 pages, 3 sheets of drawings (Figs. 1-3), Copy Not Enclosed.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electronic component desired voltage level comparison does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electronic component desired voltage level comparison, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electronic component desired voltage level comparison will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2502514

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.