Radiant energy – Inspection of solids or liquids by charged particles – Electron probe type
Reexamination Certificate
2003-04-10
2004-08-10
Wells, Nikita (Department: 2881)
Radiant energy
Inspection of solids or liquids by charged particles
Electron probe type
C250S311000, C250S306000, C250S307000, C250S397000
Reexamination Certificate
active
06774364
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to an electron microscope such as a scanning electron microscope, a transmission electron microscope, etc., a method for operating the electron microscope, and a computer-readable medium.
2. Description of the Related Art
Nowadays, an electron microscope using an electron lens as well as an optical microscope using an optical lens and a digital microscope is used as an enlargement observation apparatus for enlarging a microbody. The electron microscope is provided by electronically optically designing an image formation system such as an optical microscope as the travel direction of electrons is refracted freely. The available electron microscopes include a transmission electron microscope, a reflection electron microscope, a scanning electron microscope, a surface emission electron microscope (field-ion microscope), and the like. The transmission electron microscope uses an electron lens to form an image of electrons passing through, a specimen, a sample, etc. The reflection electron microscope forms an image of electrons reflected on the surface of a specimen. The scanning electron microscope scans a convergent electron beam over the surface of a specimen and uses secondary electrons from the scanning points to form an image. The surface emission electron microscope (field-ion microscope) forms an image of electrons emitted from a specimen by heating or ion application.
The scanning electron microscope (SEM) is an apparatus for using a secondary electron detector, a reflection electron detector, etc., to take out secondary electrons, reflection electrons, etc., occurring upon application of a thin electron beam (electron probe) to an objective specimen and displaying an image on a display screen of a CRT, LCD, etc., for the operator mainly to observe the surface form of the specimen. On the other hand, the transmission electron microscope (TEM) is an apparatus for allowing an electron beam to pass through a thin-film specimen and providing electrons scattered and diffracted by atoms in the specimen at the time as an electron diffraction pattern or a transmission electron-microscopic image, thereby enabling the operator mainly to observe the internal structure of a substance.
When an electron beam is applied to a solid specimen, it passes through the solid by energy of the electrons. At the time, an elastic collision, elastic scattering, and inelastic scattering involving an energy loss are caused by the interaction between the nucleuses and the electrons making up the specimen. As inelastic scattering occurs, the intra-shell electrons of the specimen elements and X-rays, etc., are excited, and secondary electrons are emitted, the energy corresponding thereto is lost. The emission amount of the secondary electrons varies depending on the collision angle. On the other hand, reflection electrons scattered backward by elastic scattering and emitted again from the specimen are emitted in the amount peculiar to the atom number. The scanning electron microscope uses the secondary electrons and the reflection electrons. The scanning electron microscope applies electrons to a specimen and detects the emitted secondary electrons and reflection electrons for forming an observation image.
However, the electron microscope such as SEM or TEM involves a problem of difficult operation as compared with enlargement observation apparatus such as an optical microscope and a digital microscope. Particularly, it takes time until an observation image is actually provided in addition to a large number of setup items of image observation conditions to pick up an observation image. Thus, what observation image screen is provided in response to the specified image observation condition cannot be checked in real time, and it is difficult to understand how one setup condition is reflected on the observation image screen. Particularly, a beginner unfamiliar with operation of an electron microscope cannot forecast how which item of the observation conditions will affect an image, and thus will search for an observation image by trial and error while changing the image observation conditions in various manners. Thus, it is hard for the beginner to operate an electron microscope and often an expert operator operates an electron microscope.
The expert operator can forecast the general effect of each item of the observation conditions on an observation image to some extent. However, in actual image observation, the effect changes depending on the condition and thus in the end, it becomes necessary to actually obtain an observation image and check the image and a search is made for the optimum condition by trial and error. Therefore, the expert operator also has a desire to use an easily operable electron microscope for enabling the operator to easily check how an observation image changes under various image observation conditions.
SUMMARY OF THE INVENTION
It is therefore an object of the invention to provide an electron microscope provided with a guidance function to facilitate setting the electron microscope, a method for operating n electron microscope, and a computer-readable medium.
In order to accomplish the object above, the following means are adopted. According to a first aspect of the present invention, there is provided an electron microscope for picking up an observation image of a specimen based on an image observation condition, the electron microscope comprising:
an image observation condition setting section for setting a plurality of different image observation conditions for a predetermined observation image picked up under a predetermined image observation condition;
an observation image acquisition section for picking up a plurality of observation images based on the plurality of image observation conditions set through the image observation condition setting section;
a second display section for simultaneously displaying the plurality of observation images picked up by the observation image acquisition section;
an observation image selection section for selecting a desired observation image from among the observation images displayed on the second display section; and
a first display section for displaying on an enlarged scale the observation image selected through the observation image selection section.
The electron microscope according to a second aspect of the present invention is characterized by the fact that the image observation condition setting section automatically sets a plurality of acceleration voltage conditions with at least an acceleration voltage changed as the different image observation conditions in addition to the characteristic according to the first aspect of the present invention.
The electron microscope according to a third aspect of the present invention is characterized by the fact that the image observation condition setting section automatically makes a detector selection as the different image observation conditions in addition to the characteristic according to the first aspect of the present invention.
The electron microscope according to a fourth aspect of the present invention is characterized by the fact that the observation images displayed on the second display section include a plurality of secondary electron images in addition to the characteristic according to the first aspect of the present invention.
The electron microscope according to a fifth aspect of the present invention is characterized by the fact that the observation images displayed on the second display section include a plurality of reflection electron images in addition to the characteristic according to the first aspect of the present invention.
The electron microscope according to a sixth aspect of the present invention is characterized by the fact the observation images displayed on the second display section include at least one secondary electron image and at least one reflection electron image in addition to the characteristic according to the first aspect of the present invention.
Further, the observa
Keyence Corporation
Morgan & Lewis & Bockius, LLP
Wells Nikita
LandOfFree
Electron microscope, method for operating the same, and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Electron microscope, method for operating the same, and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electron microscope, method for operating the same, and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3294927