Electron microscope, method for operating the same, and...

Radiant energy – Inspection of solids or liquids by charged particles – Electron probe type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S311000, C250S306000, C250S307000, C250S397000

Reexamination Certificate

active

06768114

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to an electron microscope such as a scanning electron microscope, a transmission electron microscope, etc., a method for operating the electron microscope, and a computer-readable medium.
2. Description of the Related Art
Nowadays, an electron microscope using an electron lens as well as an optical microscope using an optical lens and a digital microscope is used as an enlargement observation apparatus for enlarging a microbody. The electron microscope is provided by electronically optically designing an image formation system such as an optical microscope as the travel direction of electrons is refracted freely. The available electron microscopes include a transmission electron microscope, a reflection electron microscope, a scanning electron microscope, a surface emission electron microscope (field-ion microscope), and the like. The transmission electron microscope uses an electron lens to form an image of electrons passing through a specimen, a sample, etc. The reflection electron microscope forms an image of electrons reflected on the surface of a specimen. The scanning electron microscope scans a convergent electron beam over the surface of a specimen and uses secondary electrons from the scanning points to form an image. The surface emission electron microscope (field-ion microscope) forms an image of electrons emitted from a specimen by heating or ion application.
The scanning electron microscope (SEM) is an apparatus for using a secondary electron detector, a reflection electron detector, etc., to take out secondary electrons, reflection electrons, etc., occurring upon application of a thin electron beam (electron probe) to an objective specimen and displaying an image on a display screen of a CRT, LCD, etc., for the operator mainly to observe the surface form of the specimen. On the other hand, the transmission electron microscope (TEM) is an apparatus for allowing an electron beam to pass through a thin-film specimen and providing electrons scattered and diffracted by atoms in the specimen at the time as an electron diffraction pattern or a transmission electron-microscopic image, thereby enabling the operator mainly to observe the internal structure of a substance.
When an electron beam is applied to a solid specimen, it passes through the solid by energy of the electrons. At the time, an elastic collision, elastic scattering, and inelastic scattering involving an energy loss are caused by the interaction between the nucleuses and the electrons making up the specimen. As inelastic scattering occurs, the intra-shell electrons of the specimen elements and x-rays, etc., are excited, and secondary electrons are emitted, the energy corresponding thereto is lost. The emission amount of the secondary electrons varies depending on the collision angle. On the other hand, reflection electrons scattered backward by elastic scattering and emitted again from the specimen are emitted in the amount peculiar to the atom number. The scanning electron microscope uses the secondary electrons and the reflection electrons. The scanning electron microscope applies electrons to a specimen and detects the emitted secondary electrons and reflection electrons for forming an observation image.
However, the electron microscope such as SEM or TEM has the disadvantages of a large number of setup items and adjustment items and being difficult to operate as compared with enlargement observation apparatus such as an optical microscope and a digital microscope. Particularly, it is difficult for a beginner unfamiliar with operation of an electron microscope to put the complicated setup items to obtain the best observation image. If an image can be formed, the beginner cannot determine whether or not the image is optimum, and cannot make a fine adjustment to the image, and it is difficult for the beginner even to determine the necessity for the fine adjustment. In some electron microscopes, image observation conditions responsive to the purposes and specimens are preset. However, the beginner cannot recognize the significance of setting the image observation condition based on the characteristics of the electric conductivity, etc., of the specimen, and cannot determine which to select either. Thus, only skilled expert operators would be able to operate electron microscopes. Particularly, an image formed under the setup condition cannot immediately be acquired and thus the operator cannot determine the setup condition while checking the screen, resulting in difficulty in operating the electron microscope.
A general optical microscope involves main adjustment items of specimen positioning, magnification, focus, and brightness, and if the adjustment items are determined, an observation image can be acquired. If each adjustment item is changed, an observation image on which the adjustment item change result is reflected can be provided immediately, so that the operator can change the setting while visually checking the adjustment effect. In contrast, the electron microscope involves various setup and adjustment items and in addition, it is hard to predict what observation image is provided as a result of changing the items, and the operator must check the actually provided image on the screen. In addition, if the setting is changed, it takes time until an image on which the setting change is reflected is provided, and thus the operator cannot check the adjustment effect in real time. For example, with the SEM, while a signal from an arbitrary point on the specimen to be observed is detected, the whole area is scanned and further image processing of the detected signal is performed, thereby forming an image. Thus, it takes time of several ten seconds until one observation image is provided. Therefore, if setting is changed, the above-described operation needs to be again performed from the beginning to acquire an observation image; the operator must wait until an observation image is provided. Thus, the operator cannot promptly check the effect of the setting and it becomes hard for the operator to grasp the effect of setting adjustment on the observation image, resulting in difficulty in operating the electron microscope.
Further, if the acceleration voltage is raised excessively, charge-up occurs and it is made impossible to acquire a normal observation image. In addition, once charge-up occurs, labor to eliminate the charge-up is required; this is also a problem. The problem of charge-up is one factor in making it difficult to operate the electron microscope. Since the electron microscope involves the problems as described above, after all, the operation of the electron microscope depends largely on the experience of the operator, and an electron microscope that can be easily operated by a beginner is expected.
SUMMARY OF THE INVENTION
It is therefore an object of the invention to provide an electron microscope provided with a guidance function to facilitate setting the electron microscope, a method for operating n electron microscope, and a computer-readable medium.
In order to accomplish the object above, the following means are adopted. According to a first aspect of the present invention, there is provided an electron microscope for picking up an observation image of a specimen based on an image observation condition, the electron microscope comprising:
a first setting section for setting at least characteristics of the specimen as an image observation condition on a first image observation mode screen;
a first display section for displaying an observation image of the specimen based on the condition set through the first setting section;
a second display section for displaying at least one observation image of the specimen including at least one secondary electron image or at least one reflection electron image under at least two types of image observation conditions based on the condition set through the first setting section; and
a selection section for selecting a desired observation image from among the observation im

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electron microscope, method for operating the same, and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electron microscope, method for operating the same, and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electron microscope, method for operating the same, and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3210539

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.