Electron beam ion source with integral low-temperature...

Electric lamp and discharge devices: systems – Discharge device load with fluent material supply to the... – Electron or ion source

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S427000

Reexamination Certificate

active

06452338

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to the design and operation of an ion source for use in the ion implantation of semiconductors, and for the modification of the surfaces of materials. The ion source can be retrofitted into the existing fleet of ion implanters currently used in the manufacture of semiconductor devices, particularly those used in Complementary Metal-Oxide Semiconductor (CMOS) manufacturing. The ion source is specifically designed to accommodate the use of new solid feed materials such as decaborane (B
10
H
14
) and Trimethyl Indium (TMI), which vaporize at sufficiently low temperatures that currently available ion implant ion sources cannot use them. Indeed, the currently available (ion sources result in disassociation of decaborane when that material is introduced into tLem. The ion source has an integral low-temperature vaporizer, and a means of introducing the vaporized feed material into an ionization chamber which is also temperature controlled by the vaporizer. The feed material is ionized by a variable energy, variable current, wide-area electron beam which passes through the ionization chamber, but is largely prevented from interacting with the chamber walls. The ion source also incorporates a gas feed for introducing gaseous materials from pressurized gas cylinders.
2. Description of the Prior Art
Ion implantation is a key enabling technology in the manufacture of integrated circuits (IC's). In the manufacture of logic and memory IC's, ions are implanted into silicon or GaAs wafers to form the transistor junctions, and to dope the well regions of the pn junctions. By varying the energy of the ions, their implantation depth into the silicon can be controlled, allowing three-dimensional control of the dopant concentrations introduced by ion implantation. The dopant concentrations control the electrical properties of the transistors, and hence the performance of the IC's. A number of different electrically active dopant materials are used, including As, B, P, In, Sb, Be, and Ga. Many of these materials can be obtained in gaseous chemical form, for example as AsH
3
, PH
3
, BF
3
, PH
3
, and SbF
5
. The ion implanter is a manufacturing tool which ionizes the dopant-containing feed materials, extracts the dopant ions of interest, accelerates the dopant ion to the desired energy, filters away undesired ionic species, and then transports the dopant ion of interest to the wafer. Thus, the following variables must be controlled in order to achieve the desired implantation profile for a given implantation process:
Dopant feed material (e.g., BF
3
gas)
Dopant ion (e.g., B
+
)
Ion energy (e.g., 5 keV)
Chemical purity of the ion beam (e.g., <1% contaminants)
Energy purity of the ion beam (e.g., <2% FWHM).
An area of great importance in the technology of ion implantation is the ion source.
FIG. 1
shows the “standard” technology for commercial ion sources, namely the “Enhanced Bernas” ion source. This type of source is commonly used in high current, high energy, and medium current ion implanters. The ion source a is mounted to the vacuum system of the ion implanter through a mounting flange b which also accommodates vacuum feedthroughs for cooling water, thermocouples, dopant gas feed, N
2
cooling gas, and power. The dopant gas feed c feeds gas into the arc chamber d in which the gas is ionized. Also provided are dual vaporizer ovens e, fin which solid feed materials such as As, Sb
2
O
3
, and P may be vaporized. The ovens, gas feed, and cooling lines are contained within a cooled machined aluminum block g. The water cooling is required to limit the temperature excursion of the aluminum block g while the vaporizers, which operate between 100 C. and 800 C., are active, and also to counteract radiative heating by the arc chamber d when the source is active. The arc chamber d is mounted to, but in poor thermal contact with, the aluminum block g. The ion source a is an arc discharge source, which means that it operates by sustaining a continuous arc discharge between an immersed hot-filament cathode h and the internal walls of the arc chamber d. Since this arc can typically dissipate in excess of 300 W, and since the arc chamber d cools only through radiation, the arc chamber can reach a temperature in excess of 800 C. during operation.
The gas introduced to arc chamber d is ionized through electron impact with the electron current, or arc, discharged between the cathode h and the arc chamber d. To increase ionization efficiency, a uniform magnetic field i is established along the axis joining the cathode h and an anticathode j by external Helmholz coils, to provide confinement of the arc electrons. An anticathode j (located within the arc chamber d but at the end opposite the cathode h) is typically held at the same electric potential as the cathode h, and serves to reflect the arc electrons confirmed by the magnetic field i back toward the cathode h and back again repeatedly. The trajectory of the thus-confined electrons is helical, resulting in a cylindrical plasma column between the cathode h and anticathode j. The plasma density within the plasma column is typically high, on the order of 10
12
per cubic centimeter; this enables further ionizations of the neutral and ionized components within the plasma column by charge-exchange interactions, and also allows for the production of a high current density of extracted ions. The ion source a is held at a potential above ground (i.e., the silicon wafer potential) equal to the accelerating voltage V
a
of the ion implanter: the energy of the ions E as they impact the wafer substrate is given by E=qV
a
, where q is the electric charge per ion.
The cathode h is typically a hot filament or indirectly-heated cathode, which thermionically emits electrons when heated by an external power supply. It and the anticathode are typically held at a voltage V
c
between 60V and 150V below the potential of the ion source V
a
. High discharge currents D can be obtained by this approach, up to
7
A. Once an arc discharge plasma is initiated, the plasma develops a sheath adjacent to the surface of the cathode h (since the cathode h is immersed within the arc chamber and is thus in contact with the resulting plasma). This sheath provides a high electric field to efficiently extract the thermionic electron current for the arc; high discharge currents can be obtained by this method.
The discharge power P dissipated in the arc chamber is P=DV
c
, or hundreds of watts. In addition to the heat dissipated by the arc, the hot cathode h also radiates power to the arc chamber d walls. Thus, the arc chamber d provides a high temperature environment for the dopant plasma, which also boosts ionization efficiency relative to a cold environment by increasing the gas pressure within the arc chamber d, and by preventing substantial condensation of dopant material on the hot chamber walls.
If the solid source vaporizer ovens e or f are used, the vaporized material feeds into the arc chamber d through vaporizer feeds k and
1
, and into plenums m and n. The plenums serve to diffuse the vaporized material into the arc chamber d, and are at about the same temperature as the arc chamber d. Radiative thermal loading of the vaporizers by the arc chamber also typically prevents the vaporizers from providing a stable temperature environment for the solid feed materials contained therein below about 100 C. Thus, only solid dopant feed materials that both vaporize at temperatures >100 C. and decompose at temperatures >800 C. can be vaporized and introduced by this method.
A very significant problem which currently exists in the ion implantation of semiconductors is the limitation of ion implantation technology to effectively implant dopant species at low (e.g., sub-keV) energies. One critically important application which utilizes lowenergy dopant beams is the formation of shallow transistor junctions in CMOS manufacturing. As transistors shrink in size to accommodate

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electron beam ion source with integral low-temperature... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electron beam ion source with integral low-temperature..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electron beam ion source with integral low-temperature... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2866367

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.