Plastic article or earthenware shaping or treating: apparatus – Female mold and charger to supply fluent stock under... – With means between charger and mold to cut off flow of...
Reexamination Certificate
1999-05-20
2001-07-17
Heitbrink, Tim (Department: 1722)
Plastic article or earthenware shaping or treating: apparatus
Female mold and charger to supply fluent stock under...
With means between charger and mold to cut off flow of...
C425S566000, C425S572000
Reexamination Certificate
active
06261084
ABSTRACT:
BACKGROUND
The present invention relates generally to injection molding machines and processes and, more particularly, to nozzle apparati and methods for mounting nozzles in sealable alignment with the gate(s) to mold cavity(ies). Injection molding machines may utilize heated manifolds or hot runners to distribute the flow of molten plastic to one or more nozzles. The flow path communication between the hot runners and the nozzle and between the end of the nozzle and the gate to the mold cavity is preferably tightly sealed via compressed contact between the mating surfaces of the hot runner
ozzle and nozzle/gate in order to prevent leakage of plastic, gases and the like which are flowing through the hot runner and nozzle under high pressure. Where a single hot runner or manifold is used to deliver plastic flow to more than one nozzle, the mating surfaces of the hot runner and the nozzles and the mounting of the nozzles must be precisely machined/designed in order to provide the desired compression contact for each individual nozzle particularly where the individual components, such as the manifold, nozzle and associated component(s) (e.g. the mold housing itself or a retainer plate which may be mounted on the mold) expand when heated from their cold (room temperature) state to their machine operating state. As can be readily imagined, it can be difficult and expensive to manufacture a manifold, nozzle and mounting housing(s) which highly precisely effect the desired amount of compression and alignment between the manifold
ozzle and nozzle/gate surfaces at the elevated operating temperature of the machine.
SUMMARY OF THE INVENTION
In accordance with the invention there is provided, in an injection molding machine having a manifold for distributing plastic melt flow to one or more mold cavities, wherein the manifold has a flow channel having an output orifice surrounded by a lower outside surface, the manifold being expandable upon heating, a nozzle comprising:
a body mounted in a receiving aperture in a stationary housing aligned with a gate to a mold cavity, the body having a central bore for delivering plastic melt flow from the channel in the manifold to the mold cavity, the body having an upper surface for engaging with the lower surface of the manifold;
wherein the body has a lip member comprising an outer leg circumferentially spaced from an inner body section of the body, the outer leg having a surface mounted against a mounting surface of a stationary housing;
wherein the manifold is mounted adjacent to the stationary housing, the nozzle being mounted in or on the stationary housing such that the upper surface of the body of the nozzle faces the lower surface of the manifold for engagement therewith;
the lower surface of the manifold engaging the upper surface of the body of the nozzle under compression;
the outer leg of the lip member being compressed by the compression between the engaged upper surface of the body and the lower surface of the manifold.
The body of the nozzle preferably has a lower body surface engaging a surface on the interior of the receiving aperture surrounding the gate under compression from at least the compression between the engaged upper surface of the body and the lower surface of the manifold.
Further in accordance with the invention, there is provided in an injection molding machine having a manifold for distributing plastic melt flow to one or more mold cavities, wherein the manifold has a flow channel having an output orifice surrounded by a lower outside surface, the manifold being expandable upon heating, a nozzle comprising:
a body mounted in a receiving aperture in a stationary housing aligned with a gate to a mold cavity, the body having a central bore for delivering plastic melt flow from the channel in the manifold to the mold cavity, the body having an upper surface for engaging with the lower surface of the manifold;
wherein the body has a lip member comprising an outer downwardly extending leg connected through a radially extending leg section to an inner body section of the body, the outer leg having a surface mounted against a mounting surface of a stationary housing;
wherein the manifold is mounted adjacent to the stationary housing, the nozzle being mounted in or on the stationary housing such that the upper surface of the body of the nozzle faces the lower surface of the manifold for engagement therewith;
the lower surface of the manifold engaging the upper surface of the body of the nozzle under compression;
the outer leg of the lip member being compressed by the compression between the engaged upper surface of the body and the lower surface of the manifold.
Further in accordance with the invention, there is provided in an injection molding machine having a manifold for distributing plastic melt flow to one or more mold cavities, wherein the manifold has a lower surface, the manifold being expandable upon heating, a nozzle mounted in a receiving aperture of a stationary housing aligned with a gate of a mold cavity, the nozzle comprising:
an inner body having a central bore for delivering plastic melt flow from a channel in the manifold to the mold cavity, the inner body having an upper surface for engaging with the lower surface of the manifold;
an outer body having a central bore within which the inner body is mounted, wherein the outer body has a lip member comprising an outer leg and an inner leg, the outer leg having a surface mounted against a mounting surface of the stationary housing, the inner body having a lower surface mounted against a mounting surface of the inner leg;
wherein the manifold is mounted adjacent to the stationary housing, the nozzle being mounted in the receiving aperture such that the upper surface of the inner body of the nozzle faces the lower surface of the manifold for engagement therewith;
the lower surface of the manifold engaging the upper surface of the inner body of the nozzle under compression;
the outer leg of the lip member being compressed by the compression between the engaged upper surface of the inner body and the lower surface of the manifold.
The mounting surface for the inner leg is preferably disposed on a protrusion from the inner leg protruding radially toward the central bore. The lip member typically comprises a hollow cylinder having an elongated flange member extending circumferentially around an outside surface of the cylinder, wherein the flange member comprises the outer leg and at least a portion of the cylinder comprises the inner leg. The manifold and the stationary housing are preferably fixedly mounted relative to each other and the nozzle is mounted in the receiving aperture within the stationary housing wherein the central bore of the inner body is aligned with the channel of the manifold. Preferably, the inner leg of the lip member is stretched and the outer leg of the lip member is compressed by the compression between the engaged upper surface of the inner body and the lower surface of the manifold.
At least one of the inner and outer bodies preferably has a lower body surface engaging a surface on the interior of the receiving aperture surrounding the gate under compression from at least the compression between the engaged upper surface of the inner body and the lower surface of the manifold. A sealed space is preferably disposed between the inner body and the outer body.
Further in accordance with the invention there is provided, in an injection molding machine having a manifold for distributing plastic melt flow to one or more mold cavities, wherein the manifold has a lower surface, the manifold being expandable upon heating, a nozzle mounted in a receiving aperture of a stationary housing aligned with a gate of a mold cavity, the nozzle comprising:
an inner body having a central bore for delivering plastic melt flow from a channel in the manifold to the mold cavity, the inner body having an upper surface for engaging with the lower surface of the manifold;
an outer body having a central bore within which the inner body is mounted, wherein the outer b
Heitbrink Tim
Synventive Moldings Solutions Canada, Inc.
LandOfFree
Elastically deformable nozzle for injection molding does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Elastically deformable nozzle for injection molding, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Elastically deformable nozzle for injection molding will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2548511