Static structures (e.g. – buildings) – Gable or eave terminal construction
Reexamination Certificate
2000-12-29
2002-07-09
Friedman, Carl D. (Department: 3635)
Static structures (e.g., buildings)
Gable or eave terminal construction
C052S096000, C052S302300, C052S095000
Reexamination Certificate
active
06415559
ABSTRACT:
FIELD OF THE INVENTION
The present invention is in the field of roofing construction and pertains particularly to methods and apparatus for closing the ends of an installed row of roofing tiles along the eave area.
BACKGROUND OF THE INVENTION
In the field of roofing construction, one of the most popular and sought-after coverings is tile. A tile roof is a roofing system comprising a plurality of individual tiles made of fired clay, or more recently a composite material, constructed, shaped, and arranged on a roof to lie side by side in overlapping fashion so as to completely cover a roof. A Spanish or Mission-style tiled roof is arguably the most recognized and admired by consumers.
One of the most evasive problems facing a tiled roof, because of the means of overlapping tiles, is wind-driven rain. Wind-driven rain may travel nearly horizontally, and in more severe instances, diagonally upward and against a tiled roof causing moisture to be forced up underneath tiles, and water may thus enter a structure through gaps and openings presented by the roofing tiles, causing water damage. There has been much experimental work done to develop methods and materials in an effort to reduce the threat of wind-driven rain.
An area on a tiled roof that is sometimes vulnerable to such damage is the end-row of tiles installed along the eaves at the edge of a roof. This is the area on a roof where a first row of tiles is installed. Typically, interlocking tiles are nailed to a cross-member, termed a bat in the art, that runs horizontally back from the edge of the roof. Because the tiles are nailed to the bat instead of directly to the underlayment (typically plywood), the undersurface of the row of tiles at the edge is suspended approximately one-half of an inch or so above the of the surface of the underlayment. This fact presents an opening and other problems, and the curvature of the tiles presents further openings to the outside environment.
There are obvious problems with this type of installation that require extra means for correction. For example, the shape or profile of the tiles along with the above-surface position of the entire tile row provides for an open space underneath the tiles. More obviously, the hollow area under each tile is large enough for birds, insects, and other small animals to enter and perhaps nest in. The space under the interlocking portion between two adjacent tiles is large enough for insects to invade. Moreover, if these areas are left open, wind-driven rain may enter.
One of the more common prior art systems designed to combat the above problems uses an L-shaped closure made of sheet metal. Such a closure is manufactured in approximately 10-foot lengths. One leg of the L-shape is a nailing flange for nailing into the underlayment. The shape of the risers is intended to conform with the serpentine profile of the row of tiles leaving approximately one-half inch of riser to cover the gap at the interlocking portion in-between adjacent tiles. This design prevents nesting animals and most insects from entering through the covered areas, as long as the closure remains undamaged. Sealant materials may be applied to the edges of the riser and underside of the tiles in a further attempt to close gap areas in order to further reduce the chance of water invasion and insect invasion.
One problem with the prior art method and closure described above is that the sheet metal is malleable and not reinforced. If someone walks on the edge of a tiled roof, putting weight on the tiles, such as to make a repair, or to replace a broken tile, the sheet metal will crumple under the force of the weight, because the unsupported tiles give under the weight. After the weight is removed from the area, the tiles will spring back into position but the sheet-metal riser will not, This results in gaps between the crumpled area of the metal and the underside of the tile allowing insects and rain to again enter.
Other problems also exist. For example, after applying a sheet-metal closure, there will be small gaps remaining wherever the riser portion of the closure does not fully conform with the serpentine profile of the tile row. This problem is partially due to the linear dimensional error which rises additively from tile to tile over a long horizontal distance such as the edge of a roof. Often pieces of the riser must be cut and trimmed to get a good linear match of profiles. Furthermore, if the small remaining gaps are sealed, the roof cannot breathe properly which may cause moisture to form underneath contributing to wood rot.
What is clearly needed is a method and apparatus for closing the open areas along an eave row of tiles, such that the closure is resilient so it springs back if deformed. Such a closure apparatus would protect the roof underlayment from animals, insects, and rain by providing an optionally sealed closure having suitable venting means to allow the roof to breathe and moisture to weep out. Such a method and apparatus could be manufactured inexpensively in lengths that are more amenable to installation.
SUMMARY OF THE INVENTION
In a preferred embodiment of the present invention an eave closure for tile roofing is provided, comprising a nailing flange having a surface extending along a length of the closure, a planar riser potion contiguous with the nailing flange at an angle to the surface of the nailing flange, the riser portion conforming on an upper edge to the shape of the underside of adjacent installed tiles, and a lip reinforcement along the shaped upper edge of the riser portion, the lip extending substantially at a right angle to the plane of the riser portion.
In some embodiments the nailing flange has weep passages formed along a width of the flange, such that air may circulate between inside and outside an installed closure, and in some embodiments the weep passages are grooves formed in the width of the nailing flange and following a center line, with at least one change in direction across the width of the nailing flange.
In preferred embodiments the material for molding is a UV-resistance polymer material, and the length of an individual closure is equal to or less than four feet.
In another aspect of the invention a method for making eave closures for closing openings in adjacent tiles having an undulating shape, comprising the steps of (a) heat molding a sheet material over a fixture to provide two planar and parallel riser portions spaced apart and joined at an upper edge by a region extending substantially at a right angle to the planes of the riser portions, the riser portions and joining region shaped to conform to the undulating shape of the adjacent tiles; (b) forming nailing flanges in opposite directions from the riser portions along a lower edge; and (c) cutting the resulting part lengthwise along the joining region to provide two substantially identical eave closures, each having a reinforcing lip extending substantially at a right angle to the plane of the riser portion.
In some embodiments of the method the nailing flange has weep passages formed along a width of the flange, such that air may circulate between inside and outside an installed closure, and the weep passages may be grooves formed in the width of the nailing flange and following a center line, with at least one change in direction across the width of the nailing flange. In preferred embodiments the material for molding is a UV-resistance polymer material, and the length of closures is equal to or less than four feet.
In embodiments of the invention taught in enabling detail below, for the first time an eave closure is provided in a way that the closure is reinforced by a novel lip region along a shaped upper edge of the closure, adding considerable strength.
REFERENCES:
patent: 6243995 (2001-06-01), Reeves et al.
Reeves Eric Norman
Reeves Jason
Boys Donald R.
Central Coast Patent Agency Inc.
Friedman Carl D.
Katcheves Basil
So-Lite Corporation
LandOfFree
Eave closure and method of manufacture does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Eave closure and method of manufacture, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Eave closure and method of manufacture will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2850921