Dynamic CMOS circuits with individually adjustable noise...

Electronic digital logic circuitry – Function of and – or – nand – nor – or not – Field-effect transistor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C326S095000, C326S096000, C326S028000

Reexamination Certificate

active

06518796

ABSTRACT:

TECHNICAL FIELD
This invention relates generally to dynamic circuits, and more particularly to noise immunity of the dynamic circuits.
BACKGROUND
Dynamic logic circuits are well-known in the semiconductor data processing art. Basically, dynamic circuits require a two-phase operation. In a first phase, an output of the dynamic circuit is precharged and in a second phase, the output of the dynamic circuit is evaluated. While such dynamic circuits provide quick operation with lower power consumption than their static counterparts, dynamic circuits are particularly susceptible to noise on an input signal. Such noise can include ground bounce, crosstalk, charge sharing, process variations, charge leakage, alpha particles, electromagnetic radiation or other such unwanted electrical signals which occur within the circuit, resulting in spurious signals occurring at an output of the dynamic circuit. With dynamic circuits, in particular, such noise on an input may cause a precharged node therein to discharge and an erroneous output will be provided when the noise raises above the threshold voltage of the transistors comprising the dynamic circuit.
As power supply voltages (V
cc
) are scaled down, the transistor threshold voltages (V
th
) also needs to be reduced in order to preserve circuit performance. Generally the trade-off for low-voltage circuits is between noise margins and performance. Also generally the noise margin of dynamic circuits is directly related to V
th
, and a reduction in threshold values results in a reduction in noise margin, and this reduction in noise margin may not be acceptable. Present solutions to the noise problems in dynamic circuits fall generally into two classes, the first being increasing noise margins of all inputs in the same way, and the second being independently controlling noise margins of each individual input. Increasing the noise margin of all inputs can result in reduced performance when only some of the inputs are noisy. Whereas independently controlling the noise margins of each input is generally a good trade-off for low voltage circuits in terms of performance, the present techniques of independently controlling the noise margins of each input is generally applicable to only special type of circuits such as AND gates (dynamic circuits including series pull-down network).
For the reasons stated above, and for other reasons stated below which will become apparent to those skilled in the art upon reading and understanding the present specification, there is a need in the data processing art for independently controlling the noise margins of each input in a dynamic circuit configuration including parallel or series-parallel pull-down network (such as OR and ANDOR gates) which has improved noise immunity that is not dependent on the type of circuitry (such as AND, OR, and ANDOR gates), and can generally work on all types of dynamic circuits.


REFERENCES:
patent: 5532622 (1996-07-01), Beiley et al.
patent: 5841300 (1998-11-01), Murabayashi et al.
patent: 6060909 (2000-05-01), Aipperspach et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Dynamic CMOS circuits with individually adjustable noise... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Dynamic CMOS circuits with individually adjustable noise..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dynamic CMOS circuits with individually adjustable noise... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3123695

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.