Radiation imagery chemistry: process – composition – or product th – Imaging affecting physical property of radiation sensitive... – Radiation sensitive composition or product or process of making
Reexamination Certificate
1999-09-07
2002-08-13
Angebranndt, Martin (Department: 1756)
Radiation imagery chemistry: process, composition, or product th
Imaging affecting physical property of radiation sensitive...
Radiation sensitive composition or product or process of making
C430S337000, C430S338000, C430S346000, C430S945000, C522S022000, C522S023000
Reexamination Certificate
active
06432610
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally concerns (i) photochemical, and chemical, processes for the storage and the readout, by radiation of information within an optical memory, particularly such processes as make the optical memory to be of the write-once read-many, or WORM, type, and (ii) chemicals and photochemicals by which the WORM processes may be realized.
The present invention particularly concerns chemical and photochemical admixtures, suitable for use in optical memories, including both (i) dye precursor molecules, and (ii) light-sensitive molecules.
2. Description of the Prior Art
2.1 Related Prior Patents by One of the Co-Inventors of the Present Invention
Two previous patents to the selfsame Peter Rentzepis who is a co-inventor of the present invention are generally relevant in background to the present invention for teaching, inter alia, two-two-photon absorption, and the challenge of writing and reading an optical memory so that all changes are absolutely local as and when intended, and so that the written memory is stable.
U.S. Pat. No. 5,268,862 for a THREE-DIMENSIONAL OPTICAL MEMORY to the selfsame P. Rentzepis who is a co-inventor of the present application concerns an active medium, typically a photochromic material and more typically spirobenzopyran, maintained in a three-dimensional matrix, typically of polymer, and illuminated in selected regions by two laser light beams, typically of 532 nm and 1064 nm wavelength, to change from a first, spiropyran, to a second, merocyanine, stable molecular isomeric form by process of two-photon absorption. Regions not temporally and spatially coincidentally illuminated are unchanged. Later illumination of the selected regions by two red laser light beams, typically of 1064 nm wavelength each, causes only the second, merocyanine, isomeric form to fluoresce. This fluorescence is detectable by photodetectors as stored binary, data. The three-dimensional memory may be erased by heat, or by infrared radiation, typically 2.12 microns wavelength. Use of other medium permit the three-dimensional patterning of three-dimensional forms, such as polystyrene polymer solids patterned from liquid styrene monomer or by extrusion molding. Three-dimensional displays, or other patterns, can also be created.
U.S. Pat. No. 5,325,324 to Rentzepis, et. al. for a THREE-DIMENSIONAL OPTICAL MEMORY teaches selected domains, normally 10
3
*10
3
such domains arrayed in a plane, within a three-dimensional (3-D) volume of active medium, typically 1 cm
3
of spirobenzopyran containing 10
2
such planes, are temporally and spatially simultaneously illuminated by two radiation beams, normally laser light beams in various combinations of wavelengths 532 nm and 1064 nm, in order, dependent upon the particular combination of illuminating light, to either write binary data to, or read binary data from, the selected domains by process of two-photon (2-P) absorption. One laser light beam is preferably directed to illuminate all domains of the selected plane. The other laser light beam is first spatially encoded with binary information by 2-D SLM, and is then also directed to illuminate the domains of the selected plane. Direction of the binary-amplitude-encoded spatially-encoded light beam is preferably by focusing, preferably in and by a holographic dynamic focusing lens (HDFL). During writing the selected, simultaneously illuminated, domains change their isomeric molecular form by process of 2-P absorption. During reading the selected domains fluoresce dependent upon their individually pre-established, written, states. The domains' fluorescence is focused by the HDFL, and by other optical elements including a polarizer and polarizing beam splitter, to a 10
3
*10
3
detector array. I/O bandwidth to each cm
3
of active medium is on the order of 1 Gbit/sec to 1 Tbit/sec.
2.2 Diverse Prior Patents Describe Chemicals and Photochemicals of Use in Optical Memories
Diverse prior patents describe chemicals and photochemicals of use in optical memories.
For example, U.S. Pat. No. 5,592,461 to Tsujioka, et. al. for METHODS OF RECORDING AND REPRODUCING INFORMATION USING AN OPTICAL RECORDING MEDIUM describes an optical recording medium with a masking layer on a side of a recording layer for receiving a reproducing beam. The masking layer is prepared from that containing photochromic dye molecules having absorption, at the wavelength of the reproducing beam and causing a photon mode reaction by absorbing the reproducing beam to be reduced in absorption.
As an example of a patent making a use—different from what the use of the present invention will be seen to be—of a dye—different from what the preferred dye of the present invention will be seen to be—U.S. Pat. No. 5,648,135 to Watanabe, et. al. for an INFORMATION RECORDING MEDIUM HAVING RECORDING LAYER WITH ORGANIC POLYMER AND DYE CONTAINED THEREIN concerns an information recording medium having a recording layer which comprises a composition. The composition contains (1) at least one organic polymer selected from the group consisting of: (a) conjugated polymers whose conformations change by thermal energy, for example, polythiophene, and (b) polymers containing as a component a diene monomer and/or an aromatic-ring-containing vinyl monomer, for example, polystyrene; and (2) a dye having light-absorbing ability, for example, naphthalocyanine. Despite the recording layer is of the organic type that features non-toxicity and low manufacturing cost as advantages, the recording layer makes it possible to produce a rewritable optical disc which can be recorded by a semiconductor laser (830-780 nm) employed widely.
More recently, U.S. Pat. No. 5,253,198 for a THREE-DIMENSIONAL OPTICAL MEMORY to Birge, et al. concerns a high density rapid access data storage device employs a volume of field-oriented bacteriorhodopsin in a polymer medium, and contained in a vessel that can be accurately displace in three dimensions. X-axis and Y-axis laser illumination systems each converge a beam in the respective direction at a location at which a particular bit cell is to have a “1” or “0” recorded or is to be interrogated. Both laser systems are pulsed on at one wavelength to write a “1” or at a second wavelength to write a “0”. After writing, a cleaning step is carried out by actuating the laser systems non-simultaneously at the other of the wavelengths to remove any undesired photochemistry from adjacent bit cells. A read cycle involves actuating two or four lasers, and then discriminating the “1” or “0” state from the electrical signal generated by the medium.
2.3 The Prior Patents Of Swainson, et al.
A series of early patents to Swainson, et al. contemplate various means of inducing changes in three-dimensional, volume, memories by radiation beams, and optical detection of the changes so made—ergo, three-dimensional displays and optical memories. The fifth, and last, Swainson patent discussed hereinafter is possibly of greatest relevance to the present invention.
U.S. Pat. No. 4,041,476 to Swainson concerns a METHOD, MEDIUM AND APPARATUS FOR PRODUCING THREE-DIMENSIONAL FIGURE PRODUCT in which a three-dimensional figure is formed in situ in a medium having two active components by causing two radiation beams to intersect in the media. The dissimilar components are selected to respond to the simultaneous presence of the beam and to either react or to produce reactants which render the intersection of the beams physically sensible or distinguishable. The beams trace surface elements of the figure to be produced.
U.S. Pat. No. 4,238,840 to Swainson for a METHOD, MEDIUM AND APPARATUS FOR PRODUCING THREE DIMENSIONAL FIGURE PRODUCT concerns a method, apparatus and product in which a three-dimensional figure is formed in situ in a medium having two active components by causing two radiation beams to intersect in the media. The dissimilar components are selected to respond to the simultaneous presence of the beams and to either react or to produce reactants which render. the intersection o
Dvornikov Alexander
Rentzepis Peter M.
Angebranndt Martin
Fuess & Davidenas
Regents of the University of California
LandOfFree
DYE PRECURSOR MOLECULES CHEMICALLY REACTIVE WITH THE... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with DYE PRECURSOR MOLECULES CHEMICALLY REACTIVE WITH THE..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and DYE PRECURSOR MOLECULES CHEMICALLY REACTIVE WITH THE... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2955343