Dual window optical port for improved end point detection

Adhesive bonding and miscellaneous chemical manufacture – Differential fluid etching apparatus – With microwave gas energizing means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C118S713000, C118S712000

Reexamination Certificate

active

06306246

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention generally relates to the field of semiconductor processing and more particularly to improving end point detection by preventing the accretion of by-products on end point windows.
2. Description of the Relevant Art
Fabrication of an integrated circuit entails the sequencing of numerous processing operations. During the manufacture of an integrated circuit various layers of dielectric, polysilicon, and metal are deposited, doped, patterned, etched, and polished to form specific features of the circuit such as gates, interconnects, and contacts. For some of these processes, determining the end point of the processing cycle plays an important role in achieving high throughput and run-to-run reproducibility. Ideally, the end point of a processing cycle could be theoretically predicted as a function of the parameters that effect the processing environment. In this way, a semiconductor processing tool could be calibrated to terminate a processing step at a predetermined time corresponding to the end point of the processing cycle. However, because it is difficult to control all of the process parameters that affect the end point of a cycle, precise calibration is not always feasible.
To provide a more reliable means for end point detection, reaction chambers are typically designed with a window or optical port for use in conjunction with an external end point detector. End point windows are utilized in a wide variety of semiconductor processing tools including etch tools. Generally an end point detector includes an optical sensor positioned outside the window to receive light from inside the reaction chamber. Changes in the characteristics of the light signal that the end point of the processing cycle has been reached. However, chemical reactions ongoing during processing can lead to the buildup of opaque material such as polymer on interior surfaces of the reaction chamber including the end point window. Over time polymer accumulates on the end point window. Eventually, after a number of processing runs the window becomes so dirty that the optical sensor cannot accurately detect when the processing cycle ends (i.e. the end point).
One process for which end point detection is critical is dry etching, also known as plasma etching. The plasma etch process removes a patterned material from the surface of an underlying thin film using gases as the primary etch medium and plasma energy to drive the reaction. As integrated circuit technology pushes further into the sub-micron device realm, dry etching has become a mainstay process in semiconductor fabrication. This is because dry etching is generally anisotropic, allowing the controlled formation of devices with small feature dimensions. Careful monitoring of the end point of a dry etch cycle is essential to achieving high yield goals. Otherwise, overetch in a directional (anisotropic) pattern can damage underlying features.
There are basically three methods of optical end point detection: (1) optical emission spectrometry; (2) laser interferometry and reflectance; and (3) direct observation of a process through a viewing port by a human operator. See, e.g., Wolf, Silicon Processing in the VLSI Era, pp. 565-567 for a general discussion of these methods of end point measurement. The most common method for determining the end point of a dry etch is optical emission spectrometry. Optical emission spectroscopy is well known in the etching arts as a method for determining the end point of dielectric, polysilicon, and metal etches. Reactants and products in the plasma emit light at characteristic wavelengths in transitioning from excited states. The emission intensity at a given wavelength depends on the relative concentration of the species in the plasma that is emitting the light. As the etch progresses, changes in etch chemistry can be observed by monitoring changes in emission intensity of the plasma components. Thus, in the absence of the material to be etched the reactant concentration will be at some equilibrium value. However, as the desired material is being etched, the concentration of reactant species will be at a lower level than it would in the absence of the etched material. When the end point is reached and the etch material has been consumed, the reactant concentration should increase back to its equilibrium value. By calibrating the optical sensor in the presence and absence of the etch material to the signature spectrum of the reactant, the end point can be determined. In a like manner, product species of the etch process can be used to determine the end point of the etch. Optical emission spectroscopy provides a highly sensitive means for determining end points, which presents a further advantage in being easy to implement.
Another method of optical end point detection uses laser interferometry and laser reflectance. An end point detector utilizing laser interferometry and reflectance focuses a laser on a flat region of a film being etched and measures the intensity of light reflected by the film. Whether interferometry or reflectance is used depends on the properties of the layer being etched. Laser interferometry is appropriate when a transparent film such as SiO
2
is being etched, and laser reflectance is utilized when a nontransparent film is being etched. A number of drawbacks are associated with laser interferometry and reflectance. For example, these techniques may not be useful if a large batch of wafer is being etched because these techniques require that a laser be trained on a specific area of a single wafer. Etching information provided by these methods is limited to that confined area of the single wafer on which the laser is focused. Thus, in the case where a large batch of wafers is being processed, laser interferometry and reflectance cannot compensate for non-uniformities in the batch etching process.
The final method of optical end point detection relies on the human eye as the optical sensor. A human operator monitoring the etch process observes the wafer surface being etched through a viewing port on the etch chamber. Direct observation by a human observer is the least reliable of the popular end point detection methods.
While end point detection methods that rely on optical sensing present individual advantages and problems, all suffer from a common drawback attributed with polymer accretion on the end point window. When the window becomes so dirty that end point detection fails, processing must be terminated. In order to restore adequate end point detection capabilities, the etch tool must be opened, cleaned, and requalified to run. A similar procedure is followed for other semiconductor processes that use an optical port as part of an end point detection scheme.
Cleaning and requalifying the etch tool can waste over twelve hours of production time. To avoid costly shutdowns and improve throughput and run-to-run reproducibility, a number of methods have been employed in the past to reduce the problem of polymer accretion on end point windows. One method found in the prior art relies on mechanically wiping or scraping away polymer that has accumulated on the end point window. For example, an etch tool may be modified with a windshield wiper type of device. Such a device essentially consists of an axle passing through the wall of the etch tool near the end point window. The end of the axle extending outside the etch tool is fitted with a knob, and the other end of the axle protruding into the reaction chamber is fitted with a scraper. By turning the knob located on the outside of the tool the scraper rotates and removes accumulated polymer. The principle problem associated with using this type of polymer removal method is contamination of the processing environment. Particulates of polymer that have been scraped off of the window may gravitate towards and accumulate on the wafers being processed providing an undesirable contamination source.
Another method for dealing with polymer accretion on end point windows operates by covering the in

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Dual window optical port for improved end point detection does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Dual window optical port for improved end point detection, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dual window optical port for improved end point detection will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2595597

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.