Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or...
Reexamination Certificate
2006-12-15
2008-10-21
Lam, Ann Y. (Department: 1641)
Chemistry: molecular biology and microbiology
Measuring or testing process involving enzymes or...
C436S518000
Reexamination Certificate
active
07439014
ABSTRACT:
The present invention relates to droplet-based surface modification and washing. According to one embodiment, a method of providing a droplet in contact with a surface with a reduced concentration of a substance is provided, wherein the method includes: (a) providing a droplet microactuator comprising a surface in contact with a droplet comprising a starting concentration and starting quantity of the substance and having a starting volume; (b) conducting one or more droplet operations to merge a wash droplet with the droplet provided in step (a) to yield a combined droplet; and (c) conducting one or more droplet operations to divide the combined droplet to yield a set of droplets comprising: (i) a droplet in contact with the surface having a decreased concentration of the substance relative to the starting concentration; and (ii) a droplet which is separated from the surface.
REFERENCES:
patent: 5486337 (1996-01-01), Ohkawa
patent: 5770457 (1998-06-01), Stocker et al.
patent: 5980719 (1999-11-01), Cherukuri et al.
patent: 6106685 (2000-08-01), McBride et al.
patent: 6379929 (2002-04-01), Burns et al.
patent: 6473492 (2002-10-01), Prins
patent: 6538823 (2003-03-01), Kroupenkine et al.
patent: 6545815 (2003-04-01), Kroupenkine et al.
patent: 6565727 (2003-05-01), Shenderov
patent: 6629826 (2003-10-01), Yoon et al.
patent: 6665127 (2003-12-01), Bao et al.
patent: 6761962 (2004-07-01), Bentsen et al.
patent: 6773566 (2004-08-01), Shenderov
patent: 6846638 (2005-01-01), Shipwash
patent: 6911132 (2005-06-01), Pamula et al.
patent: 6949176 (2005-09-01), Vacca et al.
patent: 6958132 (2005-10-01), Chiou et al.
patent: 6989234 (2006-01-01), Kolar et al.
patent: 7189359 (2007-03-01), Yuan et al.
patent: 7189560 (2007-03-01), Kim et al.
patent: 2002/0043463 (2002-04-01), Shenderov
patent: 2002/0168671 (2002-11-01), Burns et al.
patent: 2002/0172969 (2002-11-01), Burns et al.
patent: 2003/0006140 (2003-01-01), Vacca et al.
patent: 2003/0012483 (2003-01-01), Ticknor et al.
patent: 2003/0082081 (2003-05-01), Fouillet et al.
patent: 2003/0103021 (2003-06-01), Young et al.
patent: 2003/0164295 (2003-09-01), Sterling
patent: 2003/0183525 (2003-10-01), Elrod et al.
patent: 2003/0198576 (2003-10-01), Coyne et al.
patent: 2003/0205632 (2003-11-01), Kim et al.
patent: 2003/0206351 (2003-11-01), Kroupenkine
patent: 2003/0224528 (2003-12-01), Chiou et al.
patent: 2003/0227100 (2003-12-01), Chandross et al.
patent: 2004/0007377 (2004-01-01), Fouillet et al.
patent: 2004/0031688 (2004-02-01), Shenderov
patent: 2004/0042721 (2004-03-01), Kroupenkine et al.
patent: 2004/0055536 (2004-03-01), Kolar et al.
patent: 2004/0055891 (2004-03-01), Pamula et al.
patent: 2004/0058450 (2004-03-01), Pamula et al.
patent: 2004/0091392 (2004-05-01), McBridge et al.
patent: 2004/0136876 (2004-07-01), Fouillet et al.
patent: 2004/0231987 (2004-11-01), Sterling et al.
patent: 2005/0056569 (2005-03-01), Yuan et al.
patent: 2005/0148042 (2005-07-01), Prestwich et al.
patent: 2005/0179746 (2005-08-01), Roux et al.
patent: 2006/0254933 (2006-11-01), Adachi et al.
patent: WO9915876 (1999-04-01), None
patent: WO9917093 (1999-04-01), None
patent: WO9954730 (1999-10-01), None
patent: WO03069380 (2003-08-01), None
patent: WO2004027490 (2004-04-01), None
patent: WO2006026351 (2006-03-01), None
Weaver, “Application of Magnetic Microspheres for Pyrosequencing on a Digital Microfluidic Platform”, web publication, Aug. 29, 2005.
Dewey A, Srinivasan V, Icoz E, “Visual modeling and design of microelectromechanical system transducers”, Microelectronics Journal, vol. 32, pp. 373-381, Apr. 2001.
Dewey A, Srinivasan V, Icoz E, “Towards a visual modeling approach to designing micro electromechanical system transducers,” Journal of Micromechanics and Microengineering, vol. 9, pp. 332-340, Dec. 1999.
R.B. Fair, A. Khlystov, T. Tailor, V. Ivanov, R.D. Evans, V. Srinivasan, V. Pamula, M.G. Pollack, P.B. Griffin, and J. Zhoud, “Chemical and Biological Applications of Digital Microfluidic Devices”, IEEE Design and Test of Computers, vol. 24(1): pp. 10-24 Jan.-Feb. 2007.
R.B. Fair, A. Khlystov, V. Srinivasan, V. K. Pamula, K.N. Weaver, “Integrated chemical/biochemical sample collection, pre-concentration, and analysis on a digital microfluidic lab-on-a-chip platform,” Lab-on-a-Chip: Platforms, Devices, and Applications, Conf. 5591, SPIE Optics East, Philadelphia, Oct. 25-28, 2004.
R.B. Fair, V. Srinivasan, H. Ren, P. Paik, V.K. Pamula, M.G. Pollack, “Electrowetting-based On-Chip Sample Processing for Integrated Microfluidics,” IEEE Inter. Electron Devices Meeting (IEDM), pp. 32.5.1-32.5.4, 2003.
Phil Paik, Vamsee K. Pamula, and K. Chakrabarty, “Thermal effects on Droplet Transport in Digital Microfluidics with Applications to Chip Cooling Processing for Integrated Microfluidics,” International Conference on Thermal, Mechanics, and Thermomechanical Phenomena in Electronic Systems (ITherm), pp. 649-654, 2004.
Phil Paik, Vamsee K. Pamula, and Richard B. Fair, “Rapid droplet mixers for digital microfluidic systems,” Lab on a Chip, vol. 3, pp. 253-259, 2003.
Phil Paik, Vamsee K. Pamula, Michael G. Pollack and Richard B. Fair, “Electrowetting-based droplet mixers for microfluidic systems”, Lab on a Chip (LOC), vol. 3, pp. 28-33, 2003.
Vamsee K. Pamula and Krishnendu Chakrabarty, “Cooling of integrated circuits using droplet-based microfluidics,” Proc. ACM Great Lakes Symposium on VLSI, pp. 84-87, Apr. 2003.
V.K. Pamula, V. Srinivasan, H. Chakrapani, R.B. Fair, E.J. Toone, “A droplet-based lab-on-a-chip for colorimetric detection of nitroaromatic explosives,” Proceedings of Micro Electro Mechanical Systems, pp. 722-725, 2005.
M. G. Pollack, P. Y. Paik, A. D. Shenderov, V. K. Pamula, F. S. Dietrich, and R. B. Fair, “Investigation of electrowetting-based microfluidics for real-time PCR applications,” μTAS 2003.
Pollack et al., “Electrowetting-Based Microfluidics for High-Throughput Screening,” smallTalk2001 Conference Program Abstract (Aug. 2001), p. 149, San Diego.
Hong Ren, Vijay Srinivasan, Michael G. Pollack, and Richard B. Fair, “Automated electrowetting-based droplet dispensing with good reproducibility,” Proc. Micro Total Analysis Systems (mTAS), pp. 993-996, 2003.
Hong Ren, Vijay Srinivasan, and Richard B. Fair, “Design and testing of an interpolating mixing architecture for electrowetting-based droplet-on-chip chemical dilution”, Transducers 2003, pp. 619-622, 2003.
Vijay Srinivasan, Vamsee K. Pamula, Richard B. Fair, “An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids,” Lab on a Chip, vol. 4, pp. 310-315, 2004.
Vijay Srinivasan, Vamsee K. Pamula, Richard B. Fair, “Droplet-based microfluidic lab-on-a-chip for glucose detection,” Analytica Chimica Acta, vol. 507, No. 1, pp. 145-150, 2004.
V. Srinivasan, V.K. Pamula, P. Paik, and R.B. Fair, “Protein Stamping for MALDI Mass Spectrometry Using an Electrowetting-based Microfluidic Platform,” Lab-on-a-Chip: Platforms, Devices, and Applications, Conf. 5591, SPIE Optics East, Philadelphia, Oct. 25-28, 2004.
Vijay Srinivasan, Vamsee K. Pamula, Michael G. Pollack, and Richard B. Fair, “Clinical diagnostics on human whole blood, plasma, serum, urine, saliva, sweat, and tears on a digital microfluidic platform,” Proc. Micro Total Analysis Systems (mTAS), pp. 1287-1290, 2003.
Vijay Srinivasan, Vamsee K. Pamula, Michael G. Pollack, and Richard B. Fair, “A digital microfluidic biosensor for multianalyte detection”, Proc. IEEE 16th Micro Electro Mechanical Systems Conference, pp. 327-330, 2003.
Vijay Srinivasan, Vamsee K. Pamula, K. Divakar Rao, Michael G. Pollack, Joseph A. Izatt, and Richard B. Fair, “3-D imaging of moving droplets for microfluidics using optical coherence tomography,” Proc. Micro Total Analysis Systems (mTAS), pp. 1303-1306, 2003.
F. Su, S. Ozev an
Eckhardt Allen E.
Fair Richard B.
Pamula Vamsee K.
Pollack Michael G.
Srinivasan Vijay
Advanced Liquid Logic, Inc.
Barrett William A.
Duke University
Lam Ann Y.
Mills E. Eric
LandOfFree
Droplet-based surface modification and washing does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Droplet-based surface modification and washing, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Droplet-based surface modification and washing will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3993054