Double acting cold trap

Semiconductor device manufacturing: process – Coating with electrically or thermally conductive material – To form ohmic contact to semiconductive material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S791000

Reexamination Certificate

active

06528420

ABSTRACT:

BACKGROUND OF THE INVENTION
(1) Technical Field
This invention relates generally to an apparatus used in a semiconductor manufacturing process for effectively collecting unwanted by-products in the exhaust gases of a low pressure chemical vapor deposition film fabrication process.
(2) Description of Prior Art
The following four U.S. Patents relate to cold traps for reducing source material from a reaction chamber.
U. S. Pat. No. 6,24,793b1 issued Jun. 5, 2001, to Jui-Hsiung Lee et al. disclosing a cold trap with a curvilinear cooling plate.
U. S. Pat. No. 6,107,198 issued Aug. 22, 2000, to Wei-Farn Lin discloses an apparatus and method for reducing process solid buildup by using an exhaust circuit of cold traps and heating and cooling elements.
U. S. Pat. No. 6,165,272 issued Dec. 26, 2000, to Wei-Jen Lin et al. discloses an apparatus for preventing contamination to a LPCVD chamber by using a valved exhaust vent connected to a vacuum pump.
U. S. Pat. No. 6,139,640 issued Oct. 31, 2000, to Jesse C. Ramos et al. describing a LPCVD system utilizing a mass flow rate controller for gases passing from a reaction chamber to a vacuum pump.
LPCVD is a method used to deposit thin films on semiconductor substrates. Silicon nitride is one film that is used extensively as a mask for diffusion, passivation, or as a gate dielectric in memory devices. Silicon nitride is usually formed by the LPCVD method in deposition equipment similar to the one shown in FIG.
1
. (Prior Art.)
The LPCVD method typically uses dichlorosilane as the reactant gas with ammonia in a hot-wall LPCVD vertical furnace unit
10
at a temp. 700° C.-800° C. with a chamber pressure of several hundred m Torr. During the silicon nitride deposition using the method described above, a reaction by-product is formed. This by-product is usually ammonium chloride in the form of a fine powder. This powder is deposited on any cold surface in the ducting of the LPCVD system or may be siphoned back into the reaction chamber during the film deposition process. The results of the above are that the ducting of the system requires frequent maintenance for cleaning the residue, more importantly it increases the defect density of the product which in turn will reduce the product yield of the process.
A method for reducing the effects of the ammonium chloride powder is to include a cold trap in the LPCVD system that provides an internal cold surface area for the ammonium chloride powder to condense on.
FIG. 1
is a schematic of typical LPCVD systems. The typical system includes a LPCVD reactor
10
which has an exhaust outlet
14
, a main pressure valve
23
, a cold trap
11
, and a main vacuum pump
21
. During the deposition of the silicon nitride film on semiconductor wafers positioned in the furnace
10
, the furnace exhaust gas
20
, which contains unreacted gases, and the reaction by- product ammonium chloride powder is sent through a cold trap
11
and then released to the factory exhaust system
22
. The ability and efficiency of the cold trap
11
is an important feature of the system as it affects the defect density of the process and, thereby, product yield and the frequency of maintenance.
A cross-sectional view of a conventional cold trap is shown in
FIG. 2
(Prior Art).
The cold trap is normally constructed of a cylindrical housing
20
with gas inlet and outlet ports
22
,
24
arranged as shown in FIG.
2
. The housing also supports a cooling plate
34
. The cooling plate is comprised of hollow fins that contain a cooling fluid which circulates through the fins. Cooling fluid lines are also provided and supported by the cold trap housing. The cooling fins provide a large cold surface for the deposition and collection of the ammonium chloride powder. This action prevents the ammonium chloride powder from backstreaming into the reaction chamber and producing defects on the product wafers. In the present configuration of cold traps shown in
FIG. 2
the cold trap requires cleaning of the ammonium chloride powder from the internal surfaces after every 20-25 hours of operation. The requirement for cleaning requires system downtime.
SUMMARY OF THE INVENTION
The present invention objective is to provide a cold trap that can be used in a semiconductor fabrication process for collecting unwanted particles more effectively than current cold traps are capable of doing.
A further objective of the present invention is to provide a cold trap that can be used in a semiconductor material deposition system which by its use increases the time between cleaning cycles, therefore decreasing system downtime.
Another objective of the present invention is to provide a cold trap with increased cooled surface area for the deposition of unwanted particles.
An additional objective of the present invention is to provide a gas deflecting plate that directs the gas over a second set of cooling fins to allow for a larger area for deposition of unwanted particles.
A further objective of the invention is to provide a second set of cooling fins so shaped as to provide additional cold surface area for deposition of unwanted particles.
It is also the objective of the invention to provide cooling fins so shaped as to minimize the impedance to gas flow.
The above objectives are achieved by the present invention by providing a double acting cold trap that incorporates a cylindrical housing with exhaust gas inlet and outlet ports arranged at 90°. Internal to the cylindrical housing are a set of condensing fins and a set of condensing plates. A deflecting plate is incorporated between the condensing fins and condensing plates that directs the exhaust gases in a serial fashion over the condensing surfaces. Input and output fittings for the cooling fluid are incorporated on the stainless steel housing and the fluid loop is so arranged as to provide fluid to the condensing fins and condensing plates in a closed circulating loop.


REFERENCES:
patent: 6066209 (2000-05-01), Sajoto et al.
patent: 6106626 (2000-08-01), Guan et al.
patent: 6107198 (2000-08-01), Lin et al.
patent: 6139640 (2000-10-01), Ramos et al.
patent: 6165272 (2000-12-01), Liu
patent: 6206971 (2001-03-01), Umotoy et al.
patent: 6241793 (2001-06-01), Lee et al.
patent: 6258170 (2001-07-01), Somekh et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Double acting cold trap does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Double acting cold trap, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Double acting cold trap will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3015010

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.