DOS based application supports for a controllerless modem

Data processing: structural design – modeling – simulation – and em – Emulation – Of peripheral device

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C703S025000, C703S026000, C703S027000, C710S005000, C710S100000

Reexamination Certificate

active

06230118

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
The invention relates to communications systems, and, more particularly to DOS-based application support for a controllerless modem.
This invention relates to multitasking computer systems and methods, and, more particularly, to techniques for ensuring adequate CPU resources to a real time application serviced by an operating system which is backwardly compatible to permit the execution of DOS applications.
BACKGROUND OF THE INVENTION
Computers which use a modem for communications are well-known in the art.
Communications between a computer and a modem typically occurs over a universal asynchronous receiver transmitter (UART) link. Modems can be connected to computers by inserting a modem card into a bus connector for connecting to the computer bus directly (an internal modem) or can be connected over a communications port (an external modem). Internal and external modems of the prior art typically have an onboard processor or controller for managing data protocols and transfers. The existence of an onboard processor is necessary, in the prior art, in order to ensure that modem functions get adequate processing time. The need for a dedicated processor is particularly acute in a multi-tasking computer system in which a plurality of tasks may be running simultaneously. If those tasks fail to relinquish the processor to a modem application in a timely fashion, data characters will be lost and a data transfer can be aborted.
The provision of a separate processor or controller to run a modem, merely to ensure adequate processing power for modem tasks, is expensive and provides redundant capabilities to those which already exist on a computer hosting the modem. The host has its own processor, bus and system clock. Providing these redundantly in a modem provides additional costs which would be obviated if a modem could utilize the host processor capabilities in a controllerless modem implementation. Such an implementation would ideally handle legacy DOS applications as well as 16 bit and 32 bit applications.
Newly designed microprocessors may include enlarged memory addressing facilities and revised architecture which result in enhanced capabilities. When such microprocessors are used in new computer systems, they often produce computers which are functionally superior to their predecessors due to these enhanced capabilities. Despite any functional advantages a new computer may have over its predecessors, a computer employing an improved microprocessor may not be a commercial success. Computer programs, sometimes referred to as “software,” are microprocessor specific. Therefore, when a computer employing a new microprocessor is introduced into the marketplace, there is generally little or no software which can run on it. Existing software, written for previous microprocessors, is likely incompatible with the new computer. As a result, sales of such new computers will often be sluggish until consumers see that adequate software is available for the computer. Additionally, consumers with libraries of software for existing computers may be reluctant to purchase new computers which would require them to invest in all new software. This problem is often compounded by the fact that software writers and publishers are reluctant to produce software for a new microprocessor until sales of computers incorporating the microprocessor are sufficient to create a relatively large group of potential purchasers of the software. This “wait and see” attitude on the part of both consumers and software writers can jeopardize the success of a new microprocessor and computers using the microprocessor.
Designers of new microprocessors sometimes attempt to solve this problem by designing a new microprocessor such that it will operate in multiple modes. In a first mode, for example, the microprocessor will emulate a prior microprocessor and run existing programs written for the prior microprocessor. In a second mode, the microprocessor will make full use of its enhanced capabilities. Such a design will enable manufacturers of computer systems using the microprocessor to advertise that the entire body of existing programs written for the prior microprocessor will run on their computer, thereby (in theory) stimulating computer sales to a point where software writers will begin to write programs designed to run in the new enhanced mode.
One such microprocessor is the Intel 80286, which is manufactured by the Intel Corporation of Santa Clara, Calif. The design and operation of the Intel 80286 is described in detail in a publication entitled “iAPX286 Programmer's Reference Manual Including the iAPX286 Numeric Supplement,” which is available from the Intel Corporation and is hereby incorporated by reference.
The Intel 80286 (hereinafter “80286”) operates in two modes. In a first mode, called the “real mode,” the 80286 emulates the architecture of Intel's previous 8086, 8088 microprocessor family, which is used in the IBM PC and compatible computers, for example. Thus, computer which incorporate the 80286 microprocessor, such as the IBM PC/AT, can run existing 8086 programs written for the IBM PC and compatible computers.
In a second mode, called the “protected mode,” the 80286 architecture provides enlarged memory addressing capability, enhanced multitasking support features, and a sophisticated protection scheme.
Another such microprocessor is the Intel 80386. The design and operation of the Intel 80386 is described in detail in a publication entitled “iAPX386 Programmer's Reference Manual Including the iAPX386 Numeric Supplement”, which is available from the Intel Corporation and is hereby incorporated by reference.
The 80386, in addition to a real and protected mode as described above for the 80286, has a third mode, called virtual-8086 mode. In virtual 8086 the 80386 emulates the 8086 processor in a manner similar to the real mode. The distinction between real and virtual-8086 mode is that in virtual-8086 mode the 80386 provides memory-management, protection, and multitasking support. The virtual-8086 mode allows 8086 programs to execute as a task on the 80386. Each task in virtual-8086 mode has the illusion that it is executing on an 8086.
A virtual machine monitor (VMM), which is special operating-system software, coordinates the multitasking of several 8086 programs. The VMM executes in protected mode. There are two standard techniques for transferring control from a task to a VMM so that another task can be started. First, the VMM configures to 80386 so that all interrupts, software and hardware, that are executed by an 8086 program cause control to be transferred to the VMM. Second, the VMM sets a timer interrupt. When interrupted after the specified interval, the VMM receives control.
These techniques can be used to support the transfer from 8086 program that are designed to execute under a disk operating system (DOS). A typical personal computer DOS, such as MS-DOS Version 3.X offered by Microsoft Corporation of Redmond, Wash., is a single-threaded operating system; that is, DOS is not designed to support a multitasking environment. When DOS is executed in a multitasking environment, problems can occur when DOS is interrupted. If DOS is randomly interrupted during the execution of a function, such as during execution of an interval timer, then the transfer to another task can cause the DOS data structures to be corrupted. Consequently, a VMM will allow DOS to complete a function before another task is started. Upon exit from a DOS system call, the DOS data structures are in an appropriate state.
Unfortunately, a VMM that allows all functions calls to complete before transferring tasks will result in poor system performance. Several system calls of DOS may take an indefinite amount of time to complete. For example, a call to retrieve a character from the keyboard will not complete until a key is actually entered. Similarly, if a program issues a system call to read from a communication port, the system call will not complete until a character is actually re

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

DOS based application supports for a controllerless modem does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with DOS based application supports for a controllerless modem, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and DOS based application supports for a controllerless modem will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2521315

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.