Dispenser drain attachment for flowable media

Dispensing – Resilient wall – Fluid pressure generating pump or pulsator and/or removable...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C222S207000, C222S212000, C222S213000

Reexamination Certificate

active

06752295

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field of the Invention
The present invention relates to a dispenser drain attachment for containers for different liquid, viscous and gel-type media. More particularly, the present invention relates to a dispenser drain attachment for containers for such liquids as soaps, disinfectants and cleaning or care agents, and is intended, and able to be used, for all types of flowable media which have to be dosed in portions.
The present invention may be used with gels, since even a gel will flow if the diameter of the dispenser drain is dimensioned adequately large, so that the dispenser drain attachment can, as well, be employed for portioning media in the form of a gel.
2. Description of the Prior Art
Dispenser drain attachments are known to exist in the form of various embodiments. These prior art attachments are basically screwable onto the underside of a container, where they tightly seal such container, and permit the withdrawal of predetermined portions of the medium filled in the container. If such dispenser drain attachments are mounted on the underside of the container, this will often suggest that the container is being utilized as a bottle, in which case the dispenser drain attachment is then also screwable onto the mouth of the bottle. For withdrawing portions of the contents of the bottle, the entire bottle is mounted up-side-down on a wall or a holding rack, so that the dispenser drain attachment is finally mounted on the container at the bottom.
Conventional dispenser drain attachments themselves consist of a substantially downward pointing tube having a diaphragm seal installed in its interior that acts as a one-way valve. In one embodiment, such a diaphragm is a “double” diaphragm, i.e., two diaphragms in the form of rubber disks arranged in a spaced apart manner from each other in the dispenser drain tube. Such rubber disks tightly seal the dispenser drain tube at different sites and each acts as a one-way valve, so that liquid basically can flow around the rubber diaphragms only in a top-down manner. For this purpose, the rubber disks have a beveled edge, so that such an edge rests against the inner wall of the dispenser drain tube from the bottom in a sealing manner, analogous to a lip.
The interior of an elastic gas bellows, which is mounted on the outer side of the dispenser drain tube, communicates with the chamber enclosed by the two spaced-apart rubber disks. The gas bellows are formed, for example, by a semi-spherical element having the elasticity of rubber, but may also have another shape, as long as such an element elastically bounds back into its original shape after it has been compressed. For actuating the dispenser drain attachment, a user's finger is pressed into the bellows. In the event that the hands of the user are not free at the time, or are dirty, the bellows can be compressed with the aid of a bow of a special wall bracket by actuating the bow with the elbow and causing it to apply pressure on the bellows with its other end.
When such a dispenser drain attachment is screwed onto a container, the liquid filled in the container will first flow up to the first rubber diaphragm only, as viewed from the top-down. When the gas bellows are compressed for the first time, the gas pressure in the chamber between the two spaced-apart rubber diaphragms rises. The upper rubber diaphragm remains tight in this process, and its edge acting as a seal lip is pressed against the inner wall of the dispenser attachment with an even greater force, thereby further enhancing its tightness. As a result, the lower rubber diaphragm yields to the pressure of the gas, and gas or air consequently escape around the lower diaphragm downwards through the dispenser drain tube. When the gas bellows is released again, it rebounds back into its original shape, because of its elasticity and a vacuum is generated between the two rubber diaphragms.
As a consequence, the dispenser drain tube is tightly sealed by the lower rubber diaphragm under such vacuum, because its sealing lip is tightly pressed from below to the inner wall of the tube under the increased external, i.e., atmospheric pressure, whereas the upper rubber diaphragm yields to the atmospheric pressure acting from the top, thereby permitting the flow of liquid around the sealing lip downwards, so that the chamber between the two rubber diaphragms is virtually filled up with liquid. When the gas bellows are compressed again, the lower diaphragm is opened by the pressure generated in the chamber between the two rubber diaphragms, and liquid flows around the diaphragms downward and out of the tube. The upper rubber diaphragm, by contrast, remains tight, or its tightness is increased even more so, by the increased pressure acting from the bottom. After the bellows has been released, a vacuum is generated again vis-à-vis the external pressure, which causes the lower rubber diaphragm to be closed, whereas the upper rubber diaphragm opens and new liquid can flow into the chamber between the two rubber diaphragms. Thus, the chamber is filled for further portioning, whereby the liquid, however, is retained by the lower rubber diaphragm until the gas bellows is actuated the next time.
The dispenser drain attachments known to the prior art, which function in the manner described above, require much expenditure for their manufacture. Such dispenser drain attachments are comprised of a multitude of small components, which are manufactured from different types of plastic material, using plastic injection molding technology. Individual parts or small components may be made of metal, as well. Such a dispenser drain attachment is comprised of a threaded cap, which is screwed to the external thread of the outlet of a container. The threaded cap has a tapering drain socket, on which an O-ring made of rubber is installed in an annular groove extending entirely around. The drain socket is sealed, in front, by a terminating element, which, however, has a plurality of holes through which liquid can flow outwardly. A drain tube is then plugged over the drain socket. The drain tube is tapered, as well, toward the end of its orifice, but it is offset, not coaxially, but rather sideways, so that the outer wall of the drain tube extends along a straight line on the one side; whereas it is offset on the opposite side, in accordance with the tapered shape of the mouth of the tube in the direction toward the center of the drain tube.
An extension is molded in the center of the drain tube, in the interior of the latter, at the site where the large diameter merges into the small diameter. The extension extends in the axial direction against the side of the tube having the larger diameter. The extension has a central axial bore for receiving a metal or plastic pin on which a double diaphragm made of rubber is mounted. The double diaphragm forms a one-piece rubber body that is substantially comprised of two rubber disks, which are aligned parallel with one another and spaced away from each other via a hollow axle. The edge of each of the rubber disks is beveled. The metal or plastic pin penetrates the double diaphragm and projects into a central bore located in the terminating element of the drain socket. Thus, the double diaphragm is centrally supported in the drain tube and held on both sides, i.e., at the top and bottom. On the drain tube, on the one side where the exterior of the tube extends along a straight line, a receiving sleeve is molded onto the drain tube. The interior of the sleeve communicates via a bore with the chamber located between the two rubber disks of the double diaphragm, and the edge of the sleeve is slightly bulging on the inner side. A gas bellow made of elastic material and substantially forming a semispherical element can be pressed into the sleeve. It is supported in the sleeve via an additional sealing ring, which is turned inside-out over the gas bellows from the outside and snap-locked behind the bulging edge of the sleeve.
All of the components, which amount to seven in the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Dispenser drain attachment for flowable media does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Dispenser drain attachment for flowable media, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dispenser drain attachment for flowable media will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3315179

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.