Electrical computers and digital processing systems: support – Multiple computer communication using cryptography – Protection at a particular protocol layer
Reexamination Certificate
2000-11-08
2004-09-14
An, Meng-Al T. (Department: 2127)
Electrical computers and digital processing systems: support
Multiple computer communication using cryptography
Protection at a particular protocol layer
C380S002000
Reexamination Certificate
active
06792542
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for carrying auxiliary data in a digital signal, such as an audio or video signal, without affecting the perceived quality of the signal. For example, the invention is suitable for use with digital broadcast streams and digital storage media, such as compact discs (CDs) and digital video discs (DVDs).
Schemes for communicating and storing digital data have become increasingly popular, particularly in the mass consumer market for digital audio, video, and other data. Consumers may now send, receive, store, and manipulate digital television, audio and other data content, such as computer games and other software, stock ticker data, weather data and the like. This trend is expected to continue with the integration of telephone, television and computer network resources.
However, in many cases it is desirable to control or monitor the use of such digital data. In particular, copyright holders and other proprietary interests have the right to control the distribution and use of their works, including audio, video and literary works.
Additionally, in many cases it is desirable to provide auxiliary data that provides information on a related digital signal. For example, for a musical audio track, it would be useful to provide data that indicates the name of the artist, title of the track, and so forth. As a further example, it would be useful to provide data for enforcing a rating system for audio/video content.
Other times, the auxiliary data need not be related to the primary data signal in which it is carried.
Furthermore, it would be desirable if the auxiliary data could be embedded into (e.g., carried with) the digital audio, video or other content (termed a “primary data signal”) without noticeably degrading the quality of the primary data signal.
Commonly-assigned U.S. Pat. No. 5,822,360, entitled “Method and Apparatus for Transporting Auxiliary Data in Audio Signals”, incorporated herein by reference, discloses a scheme for creating a hidden or auxiliary channel in a primary audio, video or other digital signal by exploiting the limits of human auditory or visual perception. With this scheme, a pseudorandom noise carrier is modulated by the auxiliary information to provide a spread spectrum signal carrying the auxiliary information. A carrier portion of the spread spectrum signal is then spectrally shaped to simulate the spectral shape of a primary (e.g., audio) signal. The spread spectrum signal is then combined with the audio signal to produce an output signal carrying the auxiliary information as random noise in the audio signal.
However, it would be desirable to provide auxiliary data in a primary data signal by using the primary data signal itself rather than carrying additional bits in a separate auxiliary data signal.
In particular, it would be desirable to provide a system for embedding a plurality of auxiliary digital information bits into an existing primary digitally encoded signal to form an unobjectionable composite digital signal. The signal should be unobjectionable in that the auxiliary data is imperceptible to the casual listener, viewer, or user, or otherwise provided at a desired threshold level, whether imperceptible or not, in the primary data signal.
The system should alter some of the primary signal's lower order bits to insert the auxiliary, hidden digital data. It would further be desirable for the data to be hidden to be any conceivable digital data, and for the primary signal to be any digitally sampled process.
It would be desirable if the auxiliary digital information bits could be embedded into an existing primary signal at any time, including, for example, when the primary data signal is created (e.g., during a recording session for an audio track), when the primary data signal is being distributed (e.g., during a broadcast, or during manufacture of multiple storage media such as compact discs), and when the primary data signal is being played (e.g., on a player in a consumer's home).
It would also be desirable to manipulate a minimal number of bits in a primary data signal in order to carry the auxiliary data.
It would be desirable to provide approximate spectral shaping of the embedded data.
It would be desirable to provide dynamic and perceptual-based schemes for embedding data.
It would be desirable to provide the capability to embed the data in the compressed or uncompressed domain.
The present invention provides a system having the above and other advantages.
SUMMARY OF THE INVENTION
The system, termed “Digital Hidden Data Transport (DHDT)”, employs a noise-like information bearing signal, termed an auxiliary data sequence, that comprises auxiliary, hidden digital data. The auxiliary digital data to be combined with the primary signal is a low-level digital signal. Due to its low-level, this signal is usually imperceptible to the casual listener, viewer, or user, assuming that the primary signal has a large enough dynamic range. For example, for CD audio, the dynamic range of the primary signal is typically sixteen bits.
However, for high definition applications (such as DVD audio), the noise introduced by indiscriminate manipulation of the least perceptually significant bits (LPSBs) may be objectionable (e.g., perceptible or otherwise above a desired level). Therefore, it may be desirable to minimize the manipulation of the LPSBs. The present invention provides mechanisms for minimizing the. manipulation of lower order bits for reliably transporting the hidden data.
The invention is able to exploit human perception by manipulating lower order bits of digital samples of a primary data signal. Manipulation of the lower order bits generally has little or no impact on the perceptual quality of the primary data signal (e.g., audio or video).
A primary signal comprising digital audio is usually formed from successive samples, each having sixteen to twenty-four bits, for example. Assuming the bits are arranged in two's complement notation, the highest order significant bit affects the sound of the samples the most. The next lower bit has less of an effect, and so on. The lowest order bits are less audible (or visible for video and still imagery) and can therefore be manipulated to hide digital information without noticeably degrading the overall quality of the primary data signal.
These low order bits that have negligible impact when they are perturbed are termed least perceptually significant bits (LPSBs). The LPSBs are essentially the least significant bits (LSBs). None, some or all of the bits in each sample of the primary signal can be used as LPSBs. However, in most applications, the number of LPSBs is much less than the number of bits (K) in each sample. For example, for a typical, digitally sampled audio signal with sixteen bits of dynamic range, one or two LPSBs may be used in each sample. The optimum number of LPSBs to use can be determined by experimentation to attain a desired perceptibility level.
Moreover, the number of manipulated LPSBs can vary for each sample.
To securely embed auxiliary data into a primary signal (e.g., in a carrier wave), the least perceptually significant bits are pseudo-randomly modulated. For example, a pseudo-random sequence may be modulated by an auxiliary data bit to provide an auxiliary data sequence that is less likely to be extracted by an unauthorized person (e.g., attacker). Generally, if the attacker does not know the sequence used at the encoder, the attacker will not be able to demodulate the hidden data or restore the primary signal.
A decoder end of the system may have support for self-synchronization. Generally, the decoder's version of the PN sequence will not be correctly aligned in time with the encoder's PN sequence. The correct time alignment is necessary for the decoder to demodulate the data properly. This is analogous to the problem of coherent demodulation in a receiver. Self-synchronization is therefore an important element of the system.
A decoder may be able to synchronize w
Atrero Edward
Lam Katherine S.
Lee Chong U.
Nicolas Julien J.
An Meng-Al T.
Lipsitz Barry R.
McAllister Douglas M.
Shah Nilesh
Verance Corporation
LandOfFree
Digital system for embedding a pseudo-randomly modulated... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Digital system for embedding a pseudo-randomly modulated..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Digital system for embedding a pseudo-randomly modulated... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3271432