Static information storage and retrieval – Floating gate – Particular biasing
Patent
1999-12-22
2000-10-31
Fears, Terrell W.
Static information storage and retrieval
Floating gate
Particular biasing
365202, 365207, G11C 700
Patent
active
061412562
ABSTRACT:
A flash memory cell. The flash memory cell includes first and second transistors. The first transistor has a control gate coupled to a word line, a drain coupled to a data line and a floating gate. The second transistor, similarly, includes a control gate coupled to the word line, a drain coupled to a second data line and a second floating gate. The first floating gate stores a state of the second transistor prior to programming of the flash memory cell. Further, the second floating gate stores a programmed state of the second transistor. A difference between the states of the first and second transistors represents the value of the data stored in the flash memory cell.
REFERENCES:
patent: 5021999 (1991-06-01), Kohda et al.
patent: 5027171 (1991-06-01), Reedy et al.
patent: 5111430 (1992-05-01), Morie
patent: 5253196 (1993-10-01), Shimabukuro
patent: 5293560 (1994-03-01), Harari
patent: 5317535 (1994-05-01), Talreja et al.
patent: 5357134 (1994-10-01), Shimoji
patent: 5388069 (1995-02-01), Kokubo
patent: 5418743 (1995-05-01), Tomioka et al.
patent: 5424993 (1995-06-01), Lee et al.
patent: 5430670 (1995-07-01), Rosenthal
patent: 5434815 (1995-07-01), Smarandoiu et al.
patent: 5438544 (1995-08-01), Makino
patent: 5467306 (1995-11-01), Kaya et al.
patent: 5477485 (1995-12-01), Bergemont et al.
patent: 5485422 (1996-01-01), Bauer et al.
patent: 5627781 (1997-05-01), Hayashi et al.
patent: 5714766 (1998-02-01), Chen et al.
patent: 5754477 (1998-05-01), Forbes
patent: 6009018 (1999-12-01), Forbes
Alok, D., et al., "Electrical Properties of Thermal Oxide Grown on N-type 6H-Silicon Carbide", Applied Physics Letters, 64, 2845-2846, (May 23, 1994).
Baldwin, G.L., et al., "The Electronic Conduction Mechanism of Hydrogenated Nanocrystalline Silicon Films", Proc. 4th Int. Conf. on Solid-State and Int. Circuit Tech, Beijing, 66-68, (1995 ).
Bauer, M., et al., "A Multilevel-Cell 32 Mb Flash Memory", Digest IEEE, Solid-State Circuits Conf.,, 440, (1995).
Boeringer, D.W., et al., "Avalanche amplification of multiple resonant tunneling through parallel silicon microcrystallites", Physical Rev. B, 51, 13337-13343, (1995).
Demichelis, F., et al., "Influence of Doping on the Structural and Optoelectronic Properties of Amorphous and Microcrystalline Silicon Carbide", Journal of Applied Physics, 72, 1327-1333, (Aug. 15, 1992).
Demichelis, F., et al., "Physical Properties of Undoped and Doped Microcrystalline SiC:H Deposited by PECVD", Materials Research Society Symposium Proceedings, 219, Anaheim, CA, 413-418, (Apr. 30, -May 3, 1991).
Dipert, B., et al., "Flash Memory Goes Mainstream", IEEE Spectrum, 30, 48-52, (1993).
Edelberg, E., et al., "Visible Luminescence from Nanocrystalline silicon films produced by plasma enhanced chemical vapor deposition", Appl. Phys. Lett., 68, 1415-1417, (1996).
Hamakawa, Y., et al., "Optoelectronics and Photovoltaic Applications of Microcrystalline SiC", Materials Research Society Symposium Proceedings, 164, Boston, MA, 291-301 (Nov. 29,1-Dec. 1, 1989).
Hu, G. et al., "Will Flash Memory Replace Hard Disk Drive?", 1994 IEEE International Electron Device Meeting, Panel Discussion, Session 24, Outline, 1 p., (Dec. 13, 1994).
Hybertsen, M.S., "Absorption and Emission of Light in Nanoscale Silicon Structures", Phys. Rev. Lett., 72, 1514-1517, (1994).
Jung, T.S., et al., "A 3.3V, 128Mb Multi-Level NAND Flash Memory for Mass Storage Applications", 1996 IEEE Solid-State Circuits Conf., Digest of Technical Papers, 512, (1996).
Kamata, T., et al., "Substrate Current Due to Impact Ionization in MOS-FET", Japan. J. Appl. Phys., 15, 1127-1134, (Jun. 1976).
Kato, M., et al., "Read-Disturb Degradation Mechanism due to Electron Trapping in the Tunnel Oxide for Low-voltage Flash Memories", IEEE Electron Device Meeting, 45-48, (1994).
Ohkawa, M., et al., "A 98 mm 3.3V 64Mb Flash Memory with FN-NOR type 4-Level Cell", IEEE International Solid-State Circuits Conference, 36-37, (1996).
Prendergast, J., "Flash or DRAM: Memory Choice for the Future", IEEE Electron Device Meeting, Session 25, Phoenix, AZ, (1995).
Schoenfeld, O., et al., "Formation of Si Quantum dots in Nanocrystalline silicon", Proc. 7th Int. Conf. on Modulated Semiconductor Structures, Madrid, 605-608, (1995).
Shimabukuro, R.L., et al., "Circuitry for Artifical Neural Networks with Non-volatile Analog Memories", IEEE Int'l Symp. on Circuits and Systems, 2, 1217-1220, (1989).
Shimabukuro, R.L., et al., "Dual-Polarity Nonvolatile MOS Analogue Memory (MAM) Cell for Neural-Type Circuitry", Electronics Lett., 24 , 1231-1232, (Sep. 15, 1988).
Suh, K.D., et al., "A 3.3 V 32 Mb NAND Falsh Memory with Incremental Step Pulse Programming Scheme", IEEE J. Solid-State Circuits, 30 , 1149-1156, (Nov. 1995).
Sze, S. M., "Physics of Semiconductor Devices", Wiley-Interscience 2d Ed., New York, 482, (1981).
Takeuchi, K., et al., "A Double-Level-V Select Gate Array Architecture for Mulitilevel NANAD Flash Memories", IEEE Journal of Solid-State Circuits, 31, 602-609, (Apr. 1996).
Tiwari, S., et al., "A silicon nanocrystal based memroy", Appl. Physics Lett., 68, 1377-1379, (1996).
Tiwari, S., et al., "Volatile and Non-Volatile Memories in Silicon with Nano-Crystal Storage", Int'l Electron Devices Meeting: Technical Digest, Washington, DC, 521-524, (Dec. 1995).
Tsu, R., et al., "Slow Conductance oscillations in nanoscale silicon clusters of quantum dots", Appl. Phys. Lett., 65, 842-844, (1994).
Tsu, R., et al., "Tunneling in Nanoscale Silicon Particles Embedded in an SiO/sub/2 Matrix", Abstract, IEEE Device Research Conference, 178-179, (1996).
Ye, Q., et al., "Resonant Tunneling via Microcrystalline-silicon quantum confinement", Physical Rev. B, 44, 1806-1811, (1991).
Yih, C.M., et al., "A Consistent Gate and Substrate Current Model for Sub-Micron MOSFET'S by Considering Energy Transport", Int'l Symp. on VLSI Tech., Systems and Applic., Taiwan, 127-130, (1995).
Zhao, X., et al., "Nanocrystalline Si: a material constructed by Si quantum dots", 1st Int. Conf. on Low Dimensional Structures and Devices, Singapore, 467-471, (1995).
Fears Terrell W.
Micro)n Technology, Inc.
LandOfFree
Differential flash memory cell and method for programming same does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Differential flash memory cell and method for programming same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Differential flash memory cell and method for programming same will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2060838