Die and glass material for forming glass substrate, method...

Glass manufacturing – Press molding machine – With means to adjust plunger stroke

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C065S275000, C065S318000

Reexamination Certificate

active

06718799

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a method for producing magnetic disk glass substrates suitable for recording media such as magnetic disks in large quantities and at a low price.
BACKGROUND ART
In the field of magnetic recording, particularly in magnetic disks, high performance, such as miniaturization, reduction in thickness, and high capacity has been proceeding recently, and the need for a magnetic recording medium with high density is increasing. Under such circumstances, there is much research on glass substrates because they are excellent in rigidity and hardness, easily smoothed, and extremely advantageous in increasing density and reliability.
Conventionally, glass substrates for magnetic disks were cut into predetermined sizes and polished to obtain smooth surfaces. However, in recent years, a substrate surface with super-smoothness has been demanded, and technically difficult high precision has been required in a polishing process. Therefore, polishing such substrates one by one is disadvantageous because it results in a large number of processes and an increase in the cost.
In a press molding method, a glass material is heated, molded, and cooled so that the molding face of a die is transferred to the glass material. Since this method does not require subsequent processes, it is inexpensive and provides high productivity and high quality. Therefore, the press molding method has been studied widely in the field of manufacturing optical elements and put into practical use.
However, there are different problems between forming a glass substrate having a small thickness, a large outer diameter, and a large ratio of outer diameter to thickness and forming an optical element having a relatively small ratio of outer diameter to lens thickness and a curvature.
For example, JP 1-176237 A discloses a molding method using a lens forming apparatus that includes a sleeve, a lens surface forming die sidably fitting into the sleeve, and a sleeve holder for holding the circumference of the sleeve. The method is characterized in that the amount of thermal contraction of the sleeve is smaller than that of a lens material, and the amount of thermal contraction of the sleeve holder is larger than that of the lens material.
The use of this apparatus allows a molded glass lens with a desired thickness to be obtained by specifying the thickness of the sleeve holder. Furthermore, since the amount of thermal contraction of the sleeve holder is larger than that of the lens material, pressure from an upper die always is applied to a lens during cooling, so that the lens with a surface of a desired shape can be obtained.
However, in forming such a thin glass substrate that the relationship between an outer diameter X and a thickness Y satisfies X>40 Y, when a glass material is cooled under pressure of an upper die as described above, the glass material adheres to the upper and lower die and cannot be released. In recent years, the demand for the super smooth surface of a glass substrate has been especially high, and the smoother the transferring face of a die becomes, the more likely that adhesion of the glass material occurs.
For example, JP 2-26843 A discloses a method using a thin glass preform material in order to form a molded glass product having a large outer diameter and a small thickness. Since the glass preform material has the shape close to that of the molded glass product, the material is heated easily and transformed a bit. Therefore, this method can shorten a molding cycle easily.
However, when a glass substrate in the shape of a parallel plate is formed using a glass material having the above shape, in placing the glass material on a forming die, air enters the gap between the glass material and the forming die. The air cannot be removed completely even after molding, so that bubbles are generated in the glass substrate. This tendency also increases as the surface of a glass substrate becomes smoother.
DISCLOSURE OF INVENTION
It is an object of the present invention to provide a magnetic disk glass substrate with a super smooth surface that can overcome the above disadvantages of the conventional techniques and can be manufactured by press molding. It is a further object of the present invention to provide a glass substrate forming die, a glass material to be molded into a glass substrate, and a method for manufacturing a glass substrate, by which the magnetic disk glass substrate can be obtained.
A glass substrate forming die of the present invention includes a pair of upper and lower dies and a control member for controlling the space between the upper and the lower die, and is used for manufacturing a glass substrate in the shape of a parallel plate. The amount of thermal contraction of the control member is smaller than that of a material used for the glass substrate. Since the amount of thermal contraction of the control member that controls the space between the upper and the lower die in the thickness direction is smaller than that of the glass substrate material, the upper surface and/or the lower surface of the glass substrate are released from the die when cooled after molding. Therefore, a glass substrate with a super smooth surface in which the diameter is large relative to the thickness can be manufactured easily.
Materials for the control member having the amount of thermal contraction smaller than that of the glass substrate material vary depending on a glass material to be used; examples of appropriate materials are tungsten carbide, alumina, chromium, sapphire, zircon, etc.
The above effect achieved by the forming die of the present invention is remarkable particularly when the die is used for forming such a glass substrate that the relationship between an outer diameter X and a thickness Y satisfies X>40 Y.
It is preferable that the control member of the forming die of the present invention controls the space between the upper and the lower die to be 1 mm or less.
Furthermore, it is preferable that at least one of the upper and the lower die is provided with a concave in the central portion thereof to specify the die used. In addition, a plurality of concaves can increase the number of types of dies to be distinguished.
Next, a glass material to be molded into a glass substrate of the present invention is used for manufacturing a glass substrate in the shape of a parallel plate with a forming die including a pair of upper and lower dies and a control member for controlling the space between the upper and the lower die. The glass material has an amount of thermal contraction larger than that of the control member. The glass material is shaped so that it comes into point-contact with the forming die when placed therein, and as the contact portion between the glass material and the forming die is increased by pressure molding, the glass material is transformed continuously so as to prevent air from entering the contact portion.
A first method for manufacturing a glass substrate of the present invention includes placing a glass material in a forming die including a pair of upper and lower dies and a control member for controlling the space between the upper and the lower die, and molding the glass material into a glass substrate in the shape of a parallel plate by pressure. The amount of thermal contraction of the control member is smaller than that of the glass material. The glass material comes into point-contact with the forming die when placed therein, and as the contact portion between the glass material and the forming die is increased by pressure molding, the glass material is transformed continuously so as to prevent air from entering the contact portion.
The glass material to be molded into a glass substrate and the first method for manufacturing a glass substrate, which are described above, allow the upper surface and/or the lower surface of the glass substrate to be released from a die when cooled after molding. This is because the amount of thermal contraction of the control member that controls the space between the upper and th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Die and glass material for forming glass substrate, method... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Die and glass material for forming glass substrate, method..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Die and glass material for forming glass substrate, method... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3186769

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.