Electrical computers and digital processing systems: memory – Storage accessing and control – Specific memory composition
Reexamination Certificate
1998-07-31
2001-07-24
Ellis, Kevin L. (Department: 2185)
Electrical computers and digital processing systems: memory
Storage accessing and control
Specific memory composition
Reexamination Certificate
active
06266740
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention generally relates to data processing systems in which storage components must be maintained in a predetermined sequence. More particularly this invention relates to a data processing system in which a disk storage device is divided into a plurality of storage logical volumes and in which the storage logical volumes are concatenated in a sequence to produce a single host logical volume distributed over a plurality of magnetic disk storage drives.
2. Description of Related Art
Data processing systems generally comprise one or more processors, input-output units and data storage facilities. Data storage facilities comprise various types of memory including magnetic disk storage devices or drives. Multiple drives are often grouped into arrays, commonly referred to as disk array storage devices (DASD), that store applications and data as data sets, files or blocks in logical volumes as known in the art.
Prior art data processing systems, such as Symmetrix disk storage systems available from the assignee of this invention, define one of two possible relationships between logical volumes and physical disk drives. In one, a single logical volume exists on a single physical disk drive. In a second, a single physical disk drive may store a plurality of logical volumes. This type of storage is sometimes referred to as “hypered” storage, and the logical volumes are often called “hypers”. However, in either approach, the capacity of a logical volume is limited to the maximum capacity of a physical disk drive on which the logical volume (i.e., “hyper”) resides.
There are now emerging a number of applications where the required capacity for the logical volume, or hyper, exceeds the capacity of a physical disk drive. United States Letters Patent No. 6,055,603 granted Apr. 25, 2000 defines one approach for providing such increased capacity. In accordance with that solution a number of storage logical volumes are concatenated into a predetermined sequence as a meta device wherein each storage logical volume is a meta member. The first storage logical volume or meta member in the meta device is called a “meta head”; the last storage logical volume or meta member, a “meta tail”. A meta device acts as a single host logical volume that a host addresses through the meta head. With this approach a host logical volume size becomes independent of physical drive capacity.
Meta devices require the position of the storage logical volumes or meta members including the meta head and meta tail and their corresponding drives to be fixed in sequence within a group. If, during a maintenance or upgrade procedure physical disk drives are removed and then accidentally exchanged when they are replaced, application data can be lost if that exchange goes undetected. This occurs because there is no way for the host processor to recognize that an exchange has occurred with respect to any meta member other than the meta head. The resultant potential for a data loss requires some approach to provide a data integrity check that assures correct placement of all the meta members in a meta device.
SUMMARY
Therefore it is an object of this invention to assign a unique identification to each logical volume.
It is another object of this invention to provide a method and apparatus by which each storage component or meta member of a meta device has a unique signature.
Still another object of this invention is to provide a method and apparatus for assuring the integrity of data in a meta device by monitoring the sequential placement of each logical volume in that meta device.
In accordance with this invention, testing of the sequential integrity of individual components in a magnetic disk storage system includes defining a dedicated storage area in each component that has a predetermined value in a signature field. A separate configuration file stores configuration data for each component, and this configuration data defines predetermined characteristics of the component. During testing, the predetermined value in the signature field from the dedicated storage area is analyzed and the configuration data common to the dedicated storage area and the configuration file are tested to confirm that the component possesses all the predetermined characteristics.
In accordance with another aspect of this invention, a data processing system includes a host processor and a magnetic disk storage system organized into storage logical volumes.
Certain storage logical volumes are concatenated into a meta device that constitutes a host logical volume having a plurality of storage logical volumes distributed over a plurality of disk drives in the magnetic disk storage system. Testing to assure the integrity of the meta device includes defining a dedicated storage area in each storage logical volume when that volume is formatted. A configuration file in the storage system stores, for each storage logical volume in the storage system, configuration data that defines predetermined characteristics of each storage logical volume. Each storage logical volume in a meta device additionally includes a unique signature that is stored in its dedicated storage area. The unique signature comprises certain of the configuration data for the storage logical volume. During an integrity analysis, the signature in the dedicated storage area and the configuration data common to the dedicated storage area and the configuration file are analyzed to confirm that the storage logical volume possesses all characteristics corresponding to those in the configuration file.
REFERENCES:
patent: 5148432 (1992-09-01), Gordon et al.
patent: 5325497 (1994-06-01), Jaffe et al.
patent: 5426585 (1995-06-01), Stepper et al.
patent: 5909691 (1999-06-01), Schulte et al.
Don Arieh
Ofer Erez
Vishlitzky Natan
Ellis Kevin L.
EMC Corporation
Herbster George A.
Pearson & Pearson
LandOfFree
Device sequencing and placement protection using a digital... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Device sequencing and placement protection using a digital..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device sequencing and placement protection using a digital... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2467034