Liquid purification or separation – With means to add treating material – Chromatography
Reexamination Certificate
2002-03-19
2004-04-20
Therkorn, Ernest G. (Department: 1723)
Liquid purification or separation
With means to add treating material
Chromatography
C210S656000
Reexamination Certificate
active
06723236
ABSTRACT:
BACKGROUND OF THE INVENTION
Solid phase extraction (SPE) is a chromatographic technique for preparing samples prior to performing quantitative chemical analysis, for example, via high performance liquid chromatography (HPLC), or gas chromatography (GC). The goal of SPE is to isolate target analytes from a complex sample matrix containing unwanted interferences, which would have a negative effect on the ability to perform quantitative analysis. The isolated target analytes are recovered in a solution that is compatible with quantitative analysis. This final solution containing the target compound can be directly used for analysis or evaporated and reconstituted in another solution of a lesser volume for the purpose of further concentrating the target compound, making it more amenable to detection and measurement.
Depending on the type of analysis to be performed, and detection method used, SPE may be tailored to remove specific interferences. Analysis of biological samples such as plasma and urine using high performance liquid chromatography (HPLC) generally requires SPE prior to analysis both to remove insoluble matter and soluble interferences, and also to pre-concentrate target compounds for enhanced detection sensitivity. Many sample matrices encountered in bio-separations contain buffers, salts, or surfactants, which can be particularly troublesome when mass spectrometer based detection is used. SPE can also be used to perform a simple fractionation of a sample based on differences in the chemical structure of the component parts, thereby reducing the complexity of the sample to be analyzed.
Devices designed for SPE typically include a chromatographic sorbent which allows the user to preferentially retain sample components. Once a sample is loaded onto the sorbent, a series of tailored washing and elution fluids are passed through the device to separate interferences from target sample components, and then to collect the target sample components for further analysis. SPE devices usually include a sample holding reservoir, a means for containing the sorbent, and a fluid conduit, or spout for directing the fluids exiting the device into suitable collection containers. The SPE device may be in a single well format, which is convenient and cost effective for preparing a small number of samples, or a multi-well format, which is well suited for preparing large numbers of samples in parallel. Multi-well formats are commonly used with robotic fluid dispensing systems. Typical multi-well formats include 48-, 96-, and 384-well standard plate formats. Fluids are usually forced through the SPE device and into the collection containers, either by drawing a vacuum across the device with a specially designed vacuum manifold, or by using centrifugal or gravitational force. Centrifugal force is generated by placing the SPE device, together with a suitable collection tray, into a centrifuge specifically designed for the intended purpose.
Various means have been used to contain chromatographic sorbents within SPE devices. A common method, described in U.S. Pat. No. 4,211,658, utilizes two porous filters, with chromatographic sorbent contained between the filters. In this design, the SPE device is essentially a small chromatographic column containing a packed bed of sorbent. A variation of this design is described in U.S. Pat. No. 5,395,521, where the porous filter elements are spherical in shape. In U.S. Pat. No. 4,810,381, the chromatographic sorbent is immobilized within a thin porous membrane structure. In EP Application No. 1110610 A1 a method is described for securing these filters within the SPE device by means of a sealing ring pressed around the periphery of the membrane disc. In U.S. Pat. No. 5,486,410 a fibrous structure containing immobilized functional materials is described. In U.S. Pat. No. 5,906,796 an extraction plate is described where glass fiber discs containing chromatographic sorbent are press fit into each well of the SPE device.
A number of chromatographic sorbents can be used depending on the nature of the sample matrix and target compounds. A common example is to use porous silica that has been surface derivatized with octydecyl (C
18
) or octyl (C
8
) functional groups. Porous particles that are based on organic polymers are also widely used. One such type, which is particularly well suited for SPE due to its high loading capacity and unique retention properties, is described in U.S. Pat. No. 6,254,780.
Typical SPE methods contain a sequence of steps, each with a specific purpose. The first step, referred to as the “conditioning” step, prepares the device for receiving the sample. For reversed-phase SPE, the conditioning step involves first flushing the SPE device with an organic solvent such as methanol or acetonitrile, which acts to wet the surfaces of both the device and the sorbent, and also rinses any residual contaminants from the device. This initial rinse is generally followed with a highly aqueous solvent rinse, often containing pH buffers or other modifiers, which will prepare the chromatographic sorbent to preferentially retain the target sample components. Once conditioned, the SPE device is ready to receive the sample.
The second step, referred to as the “loading” step, involves passing the sample through the device. During loading, the sample components, along with many interferences are adsorbed onto the chromatographic sorbent. Once loading is complete, a “washing” step is used to rinse away interfering sample components, while allowing the target compounds to remain retained on the sorbent. The washing step is then followed by an “elution” step, which typically uses a fluid containing a high percentage of an organic solvent, such as methanol or acetonitrile. The elution solvent is chosen to effectively release the target compounds from the chromatographic sorbent, and into a suitable sample container.
In many cases, elution with high concentrations of organic solvent requires that further steps be taken before analysis. In the case of chromatographic analysis (HPLC), it is highly desirable for samples to be dissolved in an aqueous-organic mixture rather than a pure organic solvent, such as methanol or acetonitrile. For this reason, SPE samples eluted in pure acetonitrile or methanol are usually evaporated to dryness (“drydown”), and then reconstituted in a more aqueous mixture (“reconstitution”) before being injected into an HPLC system. These additional steps not only take time and effort, but can also lead to loss of valuable sample, either through target analyte loss onto collection container surfaces during drydown, or due to target analyte evaporative losses or difficulties encountered when trying to re-dissolve the dried sample in the higher percent aqueous fluid.
It can be seen then, that it is advantageous for an SPE device to have a high capacity for retaining target compounds of a wide range of chromatographic polarities, to be capable of maintaining target compound retention as sample interferences are washed to waste, and then to provide the capability to elute target compounds in as small an elution volume as possible, thereby maximizing the degree of target compound concentration obtained during SPE.
The ability to elute in very small volumes of solvent has the added benefit of minimizing the amount of time required to evaporate and reconstitute the sample before proceeding with analysis if further concentration or solvent exchange is required. If elution volume can be kept very low, then drydown and reconstitution can be entirely eliminated.
Traditional SPE device designs have attempted to address these issues, each with a limited measure of success. Packed bed devices utilize packed beds of sorbent particles contained between porous filter discs that are press fit into the SPE device. The capture efficiency of the resulting packed beds is typically quite good, especially if the sorbent properties are carefully chosen. One drawback with conventional packed bed devices is that the void volume contained within the porous filters and pa
Belanger Jonathan
Bouvier Edouard S. P.
Fisk Raymond P.
Gilar Martin
Iraneta Pamela Carmen
Braginsky Philip
Janiuk Anthony J.
Olsen Lin B.
Therkorn Ernest G.
Waters Investments Limited
LandOfFree
Device for solid phase extraction and method for purifying... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Device for solid phase extraction and method for purifying..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for solid phase extraction and method for purifying... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3201720