Device for detecting and indicating fluid properties

Chemistry: analytical and immunological testing – Food or dairy products – Wine or alcoholic beverages

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C422S028000, C422S029000, C422S030000, C422S031000

Reexamination Certificate

active

06541260

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to devices for indicating substance properties and characteristics. More particularly, disclosed herein is a device, such as a stopper, for detecting and indicating properties and characteristics of a fluid contained in a bottle.
BACKGROUND OF THE INVENTION
The taste of wine can be adversely affected in numerous ways. Some contaminating effects can take hold while the wine remains sealed in its bottle by a cork. Others tend to attack the taste quality of the wine only after the wine bottle has been opened as by removing the cork. In each case, however, it is difficult to perceive the taint visually. As a result, tasting is typically the only means by which one can hope to determine whether the wine has been tainted.
Of course, the typical consumer can open and taste wine only after he or she has actually purchased the bottle of wine and brought it home. Furthermore, certain types of wine taint are difficult to perceive or identify, particularly by the non-expert, even upon tasting. With this, even after tasting, the wine taster may merely find wine unsuitable for consumption or at least less than ideal in taste without being able to confirm with certainty that the wine is tainted or to discern particularly how the wine is tainted.
One unfortunately common type of wine taint is commonly referred to as cork taint, “corking” or being “corked.” Corking can occur to varying degrees. Furthermore, threshold sensitivity to corking varies from individual to individual. As a result, one person may be able to perceive and identify corking in a given bottle while another person tasting the same wine might either not be able to identify how the wine is tainted or may not be able to perceive the taint at all. It is said that the most perceptive five per cent of the population are about 200 times more sensitive than the bottom five per cent. This is true not only with regard to cork taint but also with regard to other tainting effects.
The incidence of cork taint is sporadic and random. However, when it takes hold, it can be quite aggressive. Research has recorded the incidence of cork taint to vary between three and five per cent. It can strike any wine regardless of price or type. Since it takes effect after bottling, it cannot be detected until the bottle is opened. Cork taint manifests itself as very undesirable aroma and flavor characters that are imparted to bottled wines following contact with their cork. The chemical compound contributing most significantly to cork taint is 2,4,6 trichloroanisole or TCA, which is implicated in more than 80 per cent of cork tainted wines. However, at least five other compounds also can contribute to cork taint. They are guaiacol, geosmin, 2-methylisobomeol (MIB), octen-3-ol, and octen-3-one.
Aside from guaiacol, each compound is sensorially very potent. For example, research indicates that TCA can be detected in dry white wine and sparkling wines at levels of roughly two parts per trillion, which approximately equals 0.000000000002 grams in a liter of wine, and in red and port wines at around five parts per trillion. Some of the other compounds have sensory thresholds of approximately 20 parts per trillion. When so bad as to be readily perceptible, TCA typically has a musty, moldy or wet Hessian character. MIB and geosmin have an earthy/muddy aroma; guaiacol is smoky or medicinal; and octen-3-ol and octen-3-one are said to smell of tinned mushrooms.
The production of TCA is the result of rather complex chemical mechanisms. The most fundamental of these is the conversion of chlorophenols to chloroanisole by common microscopic fungi and possibly yeasts and bacteria in the presence of moisture. Unfortunately, chlorophenols have been used as pesticides and as wood preservatives. Consequently, they are common environmental pollutants. The uptake of even minute amounts of chlorophenol by the bark of a cork tree at any stage during its growth can yield corks that will produce cork taint in wine. The same is true if the cork is exposed to chlorophenols during manufacture. Also, cork taint can be the result of an interaction of TCA from the moulds naturally occurring in the tree bark, with chlorine, a chemical used to sanitize the cork. To be complete, one will note that, for similar reasons, TCA can be a major contaminant of many other foods and beverages.
In practice, whether corking will actually infect a bottle of wine depends on a plurality of factors. Among those factors are the fit in the bottleneck, the corking device clamp, and the quality and dimensions of the cork. Of these, the most important issue is the quality of the cork. In bottled wine, glass is the only inert element. The cork is not. As such, it is subject to attack by moths and moulds, which are the natural inhabitants of corks. The dominant types of moulds in long-life corks are Aspergillum and Penicillium. Moulds are naturally present in corks at bottling while the presence of yeasts and bacteria in commercial corks is relatively infrequent.
There have been some attempts at improvements in cork processing and storage. For example, some practitioners have ceased using bleach as a cork treatment during processing, which is useful since, as was discussed above, the reaction of chlorine with a mold-produced compound is a major factor in TCA production. Unfortunately, even these practices have failed to eliminate cork taint.
Of course, a number of further factors beyond cork taint can affect the taste and quality of wine. For example, empty space between the cork and wine is necessary to absorb moderate thermal changes. However, where air occupies that empty space, an excessive amount of space will increase the oxidation of the wine while in the bottle while too little air space decreases the wine's ability to withstand temperature changes thereby causing regurgitations. To prevent this, most wine today is bottled without air in an inert atmosphere of nitrogen and carbon dioxide gas.
Another characteristic that can affect the taste and quality of wine is volatile acidity, which is commonly referred to as VA. Volatile acids include acetic acid, tartaric acid, malic acid, and others. Ethyl acetate is basically a sign of degradation in wine quality and is the dominant ester in numerous wines. It is held more responsible for the souring characteristic than acetic acid (vinegar) itself, and its perception threshold is estimated at being between 180 and 200 mg/l. VA's can be sensed, such as by one's nose, in the gas-occupied space above wine and by tasting since they are fixed in the wine. Many sources can give rise to these volatile components. Generally, however, they are the result of spoilage yeasts or bacteria that are allowed to proliferate in the wine. Once present, these are difficult to remove. Like many other characteristics of wine, VA's to varying degrees can be desired by some but disliked by others.
Still another potential factor affecting the taste and quality of wine is brettanomyces, which is a yeast. Brettanomyces is commonly indicated by the presence of 4-ethyl phenol and 4-ethyl guaiacol. Some wine drinkers disdain the presence of brettanomyces in wine while others find its taste pleasurable.
An even further component that can affect wine is acetaldehyde such that it may be termed aldehydic. It is common for sherry to be aldehydic. However, an acetaldehyde character in red or white wine is generally considered undesirable. This character can be nutty, musty, or swampy. Wines with this flaw have often been exposed to too much oxygen. To a limited degree, acetaldehyde can be desirable but can be unpleasant when excessive where the wine may simply be considered oxidized.
Hydrogen sulfide, commonly found in sewer gas and emitted by rotten eggs, results in wine from an inability of yeasts to deal properly with amino acid synthesis. It can also result from a reaction with sulfur, a common fungicide. Wine containing hydrogen sulfide is often referred to as being reduced. Mercaptans are closely related a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device for detecting and indicating fluid properties does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device for detecting and indicating fluid properties, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for detecting and indicating fluid properties will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3093687

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.