Electrical computers and digital processing systems: support – Digital data processing system initialization or configuration
Reexamination Certificate
2001-03-19
2004-12-07
Lee, Thomas (Department: 2182)
Electrical computers and digital processing systems: support
Digital data processing system initialization or configuration
C711S170000
Reexamination Certificate
active
06829706
ABSTRACT:
BACKGROUND OF THE INVENTION
Field of the Invention
The invention relates to a device for recognizing functional units in an electrical system provided in preferably optional or different construction stages, the device having a data processing unit or CPU and at least one functional unit, the functional unit having a function register with a nonvolatile memory for holding function data. The invention also relates to a method for recognizing a functional unit by using this device.
Devices of this type are employed for allowing data interchange between the functional units of the electrical system, which are required for operation, and the data processing programs executed by the CPU. The functional units, in essence, include the electronic elements of the component parts, such as data lines, interfaces, memories, input/output units, ports and also control elements and the like.
So that the functional units in the electrical system are recognizable amongst one another and by the CPU, it is necessary for all the function data for the properties of each functional unit to be known and to be available in readable form for the electrical system and the CPU. If a data processing program is executed by a data processing unit or CPU and, in this context, executes instructions which require the functional unit to be accessed, this is only possible if the format of the function data is known during data communication. If the format of the data available for the functional unit is understood by the data processing program or by other functional units which are involved, then there is compatibility between these components. Because the CPU is not readily able to recognize whether the formats are compatible during data communication, when the data processing program is being executed, there is a risk that incompatible data will be processed together and that the components involved will be misinterpreted and will malfunction.
Besides the elements of the component parts, virtual devices of the electrical system, such as drivers for data processing programs and the like, may also be considered as functional units.
An electrical system generally includes a large number of functional units. In addition, the electrical system also includes the data processing programs which address and control the functional units for operating the electrical system via the CPU. The electrical systems are produced basically equipped with functional units and data processing programs and are matched to the requirements of the respective intended uses. In this context, individual functional units and data processing programs are retrofitted, i.e., installed afterwards, or are interchanged. The electrical systems are frequently produced in different disassembly stages and can have further functional units added thereto at a later time. In this regard, it is possible to assemble disassembly stages according to the required functional scope of the system. With this type of construction of the electrical system, individual functional units or groups of functional units are connected together and are controlled by one or more data processing units using data processing programs.
Because, in such electrical systems, functional units are interchanged, added to, removed or replaced, these new functional units must always be recognizable and compatible for the system. This is of particular importance for the data processing programs which communicate with the functional units in the electrical system, because these programs control the system based upon the compatibility of the functional units.
To make the functional units recognizable for the system, German Patent 295 13 317 proposes a device for automatically recognizing functional units in an electrical system provided on an optional basis or in different disassembly stages. The electrical system includes a data processing unit which has at least one functional unit. This functional unit is used as a standardized plug-in point for all types of functional units. Each of these functional units has a unique coding for identifying it. For each functional unit, there is at least one shift register provided for holding the coding associated with this functional unit. Each functional unit is equipped with a connection for outputting the coding thereof in serial form. The data processing unit has equipment for driving the shift register of a functional unit and for reading out in serial form the coding contained therein. A disadvantage of this heretoforeknown device is that, when properties of a functional unit have changed or been extended, the coding is kept unchanged, because the functional unit itself is not being replaced. Accordingly, the software needs to be changed so that the changes in the functional unit can continue to be used by the old data processing programs. Because each functional unit has a unique coding, data processing programs which were able to address the functional unit before a change are no longer able to interchange data after a change, without any updating, due to the fact that the programs cannot identify the changed properties. Furthermore, installation of new programs also necessitates that all the codings for the existing functional units be observed. This means that, without a list of all the old codings, a new program is not able to identify old functional units. If, on the other hand, a functional unit is changed, as described hereinabove, and the coding is also changed at the same time, data processing programs which were able to address the functional unit before a change are no longer able to do so if they are not updated with the new coding.
Particularly when parts for electrical systems need to be replaced after a relatively long time, it becomes apparent that, despite the fact that the data processing programs which access them are compatible, the new functional units can no longer be addressed because the new codings thereof are not known in the old data processing programs. On the other hand, problems also arise if functional units are changed and the old codings thereof are kept unchanged. The current data processing programs in the electrical system then identify the compatible functional units as being the original ones, and the new properties of the changed functional units no longer conform with the old properties. This frequently causes operating faults which result in a stalling of the system or in the occurrence of errors during operation.
The same disadvantages arise when one functional unit is supposed to be used or exchanged in different applications, i.e., in various electrical systems. The data processing programs in one system do not then recognize the functional units in the other system, because codings are not interchangeable.
These problems can generally be solved by appropriately updating the respective data processing programs containing the respective function data linked to the respective coding. However, each time the function data of the system are changed or extended, this requires a considerable level of programming effort, complex data maintenance and corresponding down times for the installation operated by the electrical system while updating is being performed.
In the course of the development cycles for data processing programs and functional units, various combinations of old and new versions of data processing programs and functional units may arise. Thus, by way of example, a newly produced data processing program should recognize all the development stages of a functional unit and should match the system accordingly, in order to prevent malfunctions. Similarly, old versions of data processing programs should be able to work with new compatible versions of functional units. To this end, clear recognition of the properties of the functional units must be assured.
SUMMARY OF THE INVENTION
It is therefore an object of the invention to provide a device for recognizing functional units with which the aforementioned disadvantages are avoided and which ensures reliable and readily realizable recognition of
Ihle Rainer
Schlindwein Gerhard
Strunk Detlef
Tusch Jan
Chandrasekhar P
Greenberg Laurence A.
Heidelberger Druckmaschinen AG
Lee Thomas
Mayback Gregory L.
LandOfFree
Device containing a functional unit that stores function... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Device containing a functional unit that stores function..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device containing a functional unit that stores function... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3335442