Device and method for the determination of diameters of...

Image analysis – Applications – Manufacturing or product inspection

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C382S286000, C382S318000, C117S014000, C117S203000, C065S382000, C065S029140

Reexamination Certificate

active

06341173

ABSTRACT:

INTRODUCTION AND BACKGROUND
The present invention relates to a device for determining the diameters of a crystal that is pulled from a liquified material and method for accomplishing the same.
Such a device is used, for example, for measuring the diameter of crystals when pulling single crystals in accordance with the Czochralski method.
In the field of crystal growth, a number of different methods are known; e.g., crystal growth from a gas phase, from a solution, or from a liquified material. The various methods for crystal growth from a liquified material have attained pre-eminence among the growth methods due to their highly developed processing technology and their production quantity.
The best known methods for crystal growth from a liquified material are the Kyropoulus method, the Bridgman method, and the Czochralski method. In the Kyropoulus method, a cooled seed crystal is dipped into a liquified material. In the Bridgman method, a crucible is lowered vertically into a temperature gradient. In the Czochralski method, a crystal is pulled from a liquified material.
With the Czochralski method the original material melts in a crucible as is also the case with the Kyropoulus method. A seed crystal is submersed in the liquified material and is wetted by it and, in so doing, fused. Then the seed crystal is pulled continuously upwards out of the liquified material while the temperature is lowered. In so doing, the crystal and crucible rotate counter-current. The speed of drawing it and the temperature of the liquified material are controlled in such a way that the crystal grows with a constant diameter after developing a shoulder. The orientation of the growing crystal corresponds to the seed crystal. This procedure is known in the art. See for example, Bonora, “Czochralski Growth of Single-Crystal Silicon—A State-of-the-Art Overview.”
Microelectronic Manufacturing and Testing
(September 1980), pp. 44-46 the entire disclosure of which is relied on and incorporated herein by reference.
The target diameter of the single crystal pulled in production today is geared toward the wafer size processed in semiconductor technology—a size that has been taking on larger and larger values due to reasons of economy in spite of the advanced miniaturization of the electronic structural components, and thus today it is predominantly at 150 to 200 mm. There are, however, plans for wafers with a diameter of 300 to 400 mm. Given these dimensions the crystal structure and purity and especially the regularity of the diameter along the cylinder-shaped crystal play an important role in a flawless single crystal. The smoother the cylinder wall is, the smaller the expected expenditure on processing and the loss of materials. For this reason controlling the diameter during the target method is an important criterion for economy.
In practice, one comes up against considerable obstacles when trying to determine and control exactly the actual diameter of the crystal in all phases of the growing process.
To overcome these difficulties, mechanical, electrical, and optical solutions have already been proposed.
In the case of a mechanical solution, the weight of the crystal is monitored and the diameter is inferred from this weight (GB-PS 1 457 275). In so doing, a signal is produced that corresponds to the effective inert mass of the crystal when pulled out. In each case this signal is compared to the calculated expected value. If the two signals deviate from each other, the pulling speed is changed to match the actual crystal's diameter to the target diameter via a control system intervention. A disadvantage of this method is that it is subject to various uncertain interferences as a result of the slow crystal growth.
In a refinement of this solution, a method is proposed with which the effect of the heat delay is compensated for during the crystal formation (DE-OS 25 13 924).
Another known solution to the problem of measuring the diameter of a crystal pulled out of a liquified material based on mechanical principles makes use of the torsional moment that occurs because of the relative rotation between the crystal and the liquified material; see DE-OS 36 40 868.
Measuring the diameter of crystals with the help of an electrical method is also already known (DD-PS 145 407). In this connection the electrical resistance of the growing crystal is measured while the DC or AC voltage flows through the crystal or through the system of the heatable crucible, liquified material, crystal, and pulling objects. To measure the electrical resistance of the crystal, a floating contact area, which does not effect a reaction with the liquified material or influence the thermal conditions of the boundary surface between the liquified material and the crystal due to the specificity of its material and its structural peculiarities, is located on the surface of the liquified material.
In the case of another known method for pulling single crystal rods with a uniform diameter from a liquified material contained in a crucible, optical agents are used to measure the crystal diameter (DE-PS 16 19 969). In so doing, changes in the rod diameter are constantly balanced out by using a control system that consists of mechanical servo components and one or several emission detectors that send emissions onto the liquified material. The emission detectors are adjusted in such a way that they capture the emission energy produced by a small surface area of the liquified material directly near the growing crystal in the near infrared and the visible spectral region, and its optical path and the crystal axis form an acute angle.
Also known is an optical method for measuring the diameter of a semiconductor rod produced through zone melting. By this method, the rod is filmed by a TV camera in the area of the zone melting, the camera signal is transformed into a binary video signal by comparing it with a variable threshold value, and the diameter of the rod is measured at the site at which a jump in brightness is determined that characterizes the solid-fluid boundary that occurs in the axial direction (
Journal of Crystal Growth,
13/14 (1972), pp. 619-23).
In an improvement of this method the site of the phase transition between the liquified material and the semiconductor crystal growing out of it is determined more accurately by taking more pictures with different threshold values and by examining the video signals obtained with the various threshold values to see whether a zone of a prespecified minimum width exists that extends over the rod cross section and that is darker than a neighboring take-off area (DE-OS 33 25 003).
The precise determination of the actual diameter of a crystal by using the optical method is, however, subject to various interferences during the growth process that can falsify the results in such a way that carrying out the method accurately is no longer possible. As a result, the quality and results of the growth process can be strongly jeopardized. Included as interferences are, among other things, strongly variable brightness and contrast ratios on the objects to be measured; i.e., on the crystal, the liquified material, or the luminous meniscus ring around the crystal—and interfering reflections on the liquified material or the unsteadiness of the object to be measured caused by mechanical interference.
Moreover, to a certain extent the geometrical form of the corrected crystal can deviate significantly from the ideal form of a cylinder with a circular cross section. By varying the crystal diameter, visibility on the entire diameter of the crystal and the luminous meniscus ring belonging to it is considerably limited. Moreover, the components and devices for optimizing the temperature distribution limit the visibility of the crystal and further jeopardize it.
Even with the present normal crystal diameters of about 150 to 200 mm these problems with the detection and control of the crystal diameter can lead to considerable disadvantages with the growth process. For the future generation of 300- to 400-mm cryst

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device and method for the determination of diameters of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device and method for the determination of diameters of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device and method for the determination of diameters of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2831475

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.