Detection of HIV-1 by nucleic acid amplification

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving virus or bacteriophage

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S006120, C435S091200, C536S023100, C536S024300

Reexamination Certificate

active

06623920

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to diagnostic detection of viral nucleic acids, and specifically relates to compositions and assays for detecting HIV-1 sequences using transcription-mediated nucleic acid amplification and probe detection of amplified sequences.
BACKGROUND OF THE INVENTION
Human immunodeficiency virus 1 (HIV-1) is the causative agent of acquired immunodeficiency syndrome (AIDS) and AIDS related syndrome (ARC). Because the infectious virus is transmissible in body fluids, including blood and plasma, it is important to detect infected body fluids before antibodies to the virus are detectable or symptoms are evident in the infected individual. For protection of patients who might otherwise receive HIV-1-infected body fluid (e.g., whole blood or plasma during transfusion), or products derived from blood or plasma, it is particularly important to detect the presence of the virus in the body fluid to prevent its use in such procedures or in products. It is also important that procedures and reagents used in detecting HIV-1 be able to detect relatively low numbers of viral copies which may be present in an infected individual.
Assays and reagents for detecting HIV-1 have been previously disclosed in, for example, U.S. Pat. Nos. 5,008,182, 5,594,122, 5,688,637 and 5,843,638; European Patent Nos. EP 178 978 B1, EP 181,150 B1 and EP 185,444 B1; published European Patent Application Nos. EP 403,333, EP 462,627 and EP 806,484; and PCT No. WO 99/61666.
The present invention includes oligonucleotide sequences used as primers for amplification and probes for detection of HIV-1 nucleic acid present in a biological sample, using an assay that preferably includes transcription-mediated nucleic acid amplification (e.g., as previously disclosed by Kacian et al., U.S. Pat. Nos. 5,399,491 and 5,554,516). The preferred detection method uses known homogeneous detection techniques to detect, in a mixture, a labeled probe that is bound to an amplified nucleic acid (as disclosed, for example, in Arnold et al.
Clin. Chem.
35:1588-1594 (1989); Nelson et al., U.S. Pat. No. 5,658,737; and Lizardi et al., U.S. Pat. Nos. 5,118,801 and 5,312,728). The present invention also includes nucleic acid oligonucleotide sequences that are useful for capturing the HIV-1 target using nucleic acid hybridization techniques that preferably use magnetic particles in separation of the captured target (Whitehead et al., U.S. Pat. Nos. 4,554,088 and 4,695,392).
SUMMARY OF THE INVENTION
According to one aspect of the invention, there are provided oligomers comprising a base sequence of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:10, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:42, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52 or SEQ ID NO:57. One embodiment includes oligomers wherein the base sequence is that of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:10, SEQ ID NO:17, SEQ ID NO:18 or SEQ ID NO:45. Another embodiment includes oligomers further comprising a backbone that includes at least one 2′-methoxy RNA group, at least one 2′ fluoro-substituted RNA group, at least one peptide nucleic acid linkage, at least one phosphorothioate linkage, at least one methylphosphonate linkage or any combination thereof. Another embodiment includes oligomers in which the base sequence comprises the sequence of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20 or SEQ ID NO:45, and the backbone comprises at least one 2′-methoxy RNA group.
According to another aspect of the invention, there are oligomers consisting of a base sequence of SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:16, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:54, SEQ ID NO:55 or SEQ ID NO:56. In one embodiment, the oligomer has a base sequence of SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13 or SEQ ID NO:16. In another embodiment, the base sequence of the oligomer is joined by a backbone that includes at least one 2′-methoxy RNA group, at least one 2′ fluoro-substituted RNA group, at least one peptide nucleic acid linkage, at least one phosphorothioate linkage, at least one methylphosphonate linkage or any combination thereof.
According to another aspect of the invention, there are provided labeled oligomers comprising a base sequence of SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55 or SEQ ID NO:56; and a detectable label joined directly or indirectly to the base sequence. In one embodiment, the detectable label is a luminescent compound. In another embodiment, the base sequence is joined by a backbone comprising at least one 2′-methoxy RNA group. One embodiment is a labeled oligomer having the base sequence of SEQ ID NO:16, SEQ ID NO:17 or SEQ ID NO:18, and the label that is a chemiluminescent compound. A preferred embodiment is a labeled oligomer having the base sequence of SEQ ID NO:16 containing an inosine at residue 7, and an acridinium ester compound as the label.
According to another aspect of the invention, there is provided a method of detecting HIV-1 RNA in a biological sample, comprising the steps of: providing a biological sample containing HIV-1 RNA; contacting the biological sample with at least one capture oligomer comprising a base sequence that hybridizes specifically to a target region in LTR or pol sequences of HIV-1 RNA, thus forming a capture oligomer:HIV-1 RNA complex; separating the capture oligomer:HIV-1 RNA complex from the biological sample; then amplifying the LTR or pol sequences, or a cDNA made therefrom, using a nucleic acid polymerase in vitro to produce an amplified product; and detecting the amplified product using a labeled detection probe that hybridizes specifically with the amplified product. In one embodiment, the contacting step uses a capture oligomer that further comprises a tail sequence that binds to a complementary sequence immobilized on a solid support. In another embodiment, the base sequence of the capture oligomer that hybridizes specifically to a target region in LTR or pol sequences comprises a sequence of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5,SEQ ID NO:19 or SEQ ID NO:57. In another embodiment, the capture oligomer comprises the base sequence of at least one of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:20 or SEQ ID NO:45, or is any combination of oligomers of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:20 or SEQ ID NO:45. In a preferred embodiment, the capture oligomer is any combination of at least two oligomers having base sequences selected from the group of SEQ ID NO:2, SEQ ID NO:4 and SEQ ID NO:6. In one embodiment, the capture oligomer is a combination of oligomers having base sequences of SEQ ID NO:20 and SEQ ID NO:6, or SEQ ID NO:45 and SEQ ID NO:6. In another embodiment, the amplifying step uses at least two amplification oligomers that bind specifically to LTR or pol sequences or complementary sequences thereof. Preferably, the amplifying step uses at least two amplification oligomers for amplifying LTR sequences selected from the group consisting of SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37 and SEQ ID NO:38. Another embodiment uses, in the amplifying step, at least two amplification

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Detection of HIV-1 by nucleic acid amplification does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Detection of HIV-1 by nucleic acid amplification, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Detection of HIV-1 by nucleic acid amplification will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3002123

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.