Deposition method of dielectric films having a low...

Semiconductor device manufacturing: process – Coating of substrate containing semiconductor region or of... – Insulative material deposited upon semiconductive substrate

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S791000, C438S478000

Reexamination Certificate

active

06551949

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to the field of electronic devices, such as integrated electronic circuits with very large scale integration (VLSI). More particularly, the invention relates to a method of low dielectric constant film deposition on a semiconductor through chemical vapor deposition (CVD) techniques for use in making such devices.
BACKGROUND OF THE INVENTION
Low dielectric constant films are very important materials for insulation technology used in manufacturing VLSI electronic circuits. Currently, silicon oxide is the dielectric most used in the microelectronics industry. Yet, the trend in this industry is that the devices used in HC-MOS technology are continuously getting smaller. This reduces the average distances between the various devices and, in particular, between the single active elements of the devices.
Accordingly, there is an increasing need for low dielectric constant films which reduce the thickness of the insulation dielectric. Further, it is also desirable to reduce the effects of stray capacitance which results among the various electrically active structures due to the interposed dielectric. Hence, materials that may function as insulation dielectrics and which also have increasingly better gap-fill and step-coverage capacities are sought after.
Numerous references may be consulted for descriptions of current deposition methods. Some examples include: T. Shirafuji et al., “Plasma Copolymerization of Tetrafluoroethylene/Hexamethyldisiloxane, and In Situ Fourier Transform Infrared Spectroscopy of Its Gas Phase,” Jpn. J. Appl. Phys., Vol. 38, No. 7B, 1999, pp. 4520-4526; S. M. Yun et al., “Low-Dielectric-Constant-Film Deposition with Various Gases in a Helicon Plasma Reactor,” J. Appl. Phys., Vol. 38, No. 7B, 1999, pp. 4531-4534; Y. C. Quan et al., “Polymer-like Organic Thin Film deposited by Plasma Enhanced Chemical Vapor Deposition, Using the Para-xylene Precursor as Low Dielectric Constant Interlayer Dielectrics for Multilevel Metallization,” J. Appl. Phys., Vol. 38, No. 3A, 1999, pp. 1356-1358; L. M. Han et al., “Pulsed Plasma Polymerization of Pentafluorostyrene: Synthesis of Low Dielectric Constant Films,” J. Of Appl. Phys., Vol. 84, No. 1, 1998, pp. 439-444; S. M. Yun et al., “SiOF Film Deposition Using FS(OC
2
H
5
)
3
,” J. Of Electrochem. Soc., Vol. 145, No. 7, 1998, pp. 2576-2580; V. Pankov et al., “The Effect of Hydrogen Addition on the Fluorine Doping Level of SiOF Films Prepared by Remote Plasma Enhanced Chemical Vapor Deposition Using SiF
4
-based Plasmas,” Jpn. J. Appl. Phys., Vol. 37, No. 11, 1998, pp. 6135-6141; and Y. Uchida et al., “A Fluorinated Organic-Silica Film with Extremely Low Dielectric Constant,” Jpn. J. Appl. Phys., Vol. 38, No. 4B, 1999, pp. 2368-2372).
The prior art deposition methods described in the above references generally relate to the deposition of low dielectric constant films through CVD methods, such as subatmospheric chemical vapor deposition (SACVD), plasma enhanced chemical vapor deposition (PECVD), low pressure chemical vapor deposition (LPCVD), atmospheric,pressure chemical vapor deposition (APCVD), and high density plasma chemical vapor deposition (HDP-CVD). Chemical compounds called precursors are used for starting the film deposition process, which must include chemical elements that will form the chemical structure of the final film.
One typical low dielectric constant film includes fluorocarbons deposited by plasma. Another prior art film is fluorine enhanced silicon oxides (e.g., SiOF) made from mixtures of hexamethyldisiloxane (HMDSO), TFE (tetrafluoroethylene), para-xylene (P-XILENE) and pentafluorostyrene deposited by plasma-chemical methods or by fluoro-triethylsesquioxane (FTES) through CVD or fluoro silicon glass (FSG) methods deposited through HDP-CVD by a mixture of tetrafluofluorosilane and silane. Still other prior art films include the “diamond-like” film provided either by high-temperature processes or with plasma techniques from hydrocarbon mixtures and sesquioxide (HSQ) and methylsesquioxane (MSQ) deposited through a “spin-coating” process.
The above-described methods exhibit certain significant disadvantages. In fact, by using plasma-chemical techniques, it is not possible to control the stoichiometry of the produced film, which among other things exhibits limited “gap fill” and “step coverage.” On the contrary, one drawback of SiOF films is the fluorine dissipation during the heating step. With respect to fluorocarbons, one important drawback is the low thermal stability at which these films may decompose after heating. That is, fluorine ions are freed which would irreversibly impair the operation of the device.
Another problem is the throughput of the films that may currently be implemented in plasma-chemical industrial processes. One attempt to address this problem is found in U.S. Pat. No. 4,938,995 to Giordano et al., and assigned to The Standard Oil Company. Films deposited in reasonable process times through “spin-coating” are described in U.S. Pat. No. 5,889,104 to Rosenmayer and assigned to W. L. Gore & Associates, Inc.
Moreover, the above films may have a low dielectric constant and thermal stability above 400° C. Nevertheless, the films deposited through spin-coating can deteriorate as a result of the treatments during the plasma phase to which the device is subjected and during the machining steps subsequent to the deposition. This is because of the properties of such films which behave as insulators and interact with oxygen (O
2
). Further, the high porosity of these films results in a low dielectric constant and may make them unreliable for use in a process flow for manufacturing microelectronics devices. Moreover, a significant disadvantage of poly-organic films is that they have a low resistance to thermal treatments.
Thus, in the microelectronics industry there is a need for deposition precursor compounds that provide low dielectric constant films which may readily be used for manufacturing VLSI electronic circuits.
SUMMARY OF THE INVENTION
It is an object of the invention to provide a method of low dielectric constant film deposition by using conventional CVD techniques used in the coating processes of thin films with a more advantageous class of precursor compounds (from the thermal stability standpoint), with improved film evenness and process conditions.
The present invention is directed to using a class of monomeric compounds, called organosilanes, as deposition precursors in conventional CVD techniques which are suitable for the industrialization of thin film coating processes. The method of the invention essentially includes using a class of silicon compounds bound to oxygen and to an organic portion as deposition precursors, namely organosilanes.
More specifically, a low dielectric constant film is deposited on a surface of a semiconductor substrate through CVD techniques using a class of precursor monomeric compounds including oxygenated organosilanes. The precursor monomers may include at least one silicon-oxygen-organic unit bond. The organic unit preferably is a non-substituted benzene ring or has at least one substituent selected from the group including a C
1-4
alkyl, halogen, CF
3
or other aromatic compounds. Advantageously, according to the invention, the monomeric compounds may have the following formula:
where R and R
1
are each equal to H, Hal, a C
1-4
alkyl, CF
3
, a C
1-4
alkoxide, NO
2
, or an aromatic ring (optionally substituted ), R
2
and R
3
each are a C
1-4
alkyl, and X is a halogen (e.g., Br or Cl).


REFERENCES:
patent: 5466850 (1995-11-01), Alty et al.
patent: 6303523 (2001-10-01), Cheung et al.
patent: 2002/0016084 (2002-02-01), Todd
patent: 2002/0018849 (2002-02-01), George et al.
patent: 2002/0019116 (2002-02-01), Sandhu et al.
patent: 0826791 (1998-03-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Deposition method of dielectric films having a low... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Deposition method of dielectric films having a low..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Deposition method of dielectric films having a low... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3020420

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.