Delay analysis method and design assist apparatus of...

Computer-aided design and analysis of circuits and semiconductor – Nanotechnology related integrated circuit design

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C716S030000, C716S030000

Reexamination Certificate

active

06578182

ABSTRACT:

BACKGROUND OF THE INVENTION
In recent years, with the adoption of microfabrication in semiconductor process technology, the rate of signal delay in relation to interconnections has increased. This has made it difficult to design timings to satisfy their specifications in design of semiconductor integrated circuits (LSI)
Conventionally, designers design and develop LSI circuits in the following manner. After a logic circuit design process with a logic synthesis tool and a layout design process with a layout tool, a designer performs timing analysis to examine whether or not an LSI circuit obtained through these processes satisfies the timings on the specifications. If the LSI circuit fails to satisfy the specifications, the designer determines that the layout design process should be repeated, or, in some instances, even determines that the design should be done again from the logic circuit design process.
FIG. 4
is a simplified illustration of the relation of timings in a part of LSI circuit design. Referring to
FIG. 4
, CC denotes a circuit portion to be analyzed, which includes a number of signal paths Path(i,j). Reg(i) and Reg(j) denote a start register and an end register, respectively, for the signal paths Path(i,j). Among propagation delays of a number of signal paths between the start register Reg(i) and the end register Reg(j), the minimum and maximum delay values are denoted by Wmin(i,j) and Wmax(i,j), respectively.
Suppose LSI design specifications include timing specifications satisfying a clock cycle T. In circuit design based on such specifications, if the maximum delay Wmax obtained after the circuit layout design fails to be shorter than the clock cycle T, it is impossible to complete data transfer through the signal path Path(i,j) within the clock cycle T. To avoid this trouble, conventionally, a delay analysis method as shown in
FIG. 5
has been employed to analyze delays of signal paths. That is, a frequency distribution graph has been prepared for the maximum delays Wmax (i,j) of signal paths between all register pairs (i,j) of start and end registers, and generally used for delay analysis. This graph shows how the maximum delay Wmax is distributed and how an error is distributed with respect to the clock cycle T. As an example of such a system, Japanese Laid-Open Patent Publication No. 9-054138 discloses signal delay analysis by an interactive signal delay analysis method for semiconductor circuits, where the number of errors and the ratio thereof are presented in the form of a circle graph, and signal delay of a semiconductor circuit is analyzed based on the presented results.
Conventionally, designers have performed circuit design to satisfy targets on the design specifications using the frequency distribution graph. That is, when a majority of signal paths fail to satisfy the clock cycle T, the design method is reviewed starting from the logic circuit design process (major correction). When only a small number of signal paths fail to satisfy the clock cycle T, minute correction is made in the layout design process (minor correction).
The conventionally adopted frequency distribution graph or equivalent information thereof has the following problems. First, it fails to analyze the cause of a timing error generated by integration of a set-up error and clock delay. Secondly, it fails to analyze the cause of a timing error generated by integration of a hold error and clock delay. Thirdly, it fails to provide information essential for the current complicated design. For example, no design improvement indication is provided for a logic circuit section and a clock section.
SUMMARY OF THE INVENTION
An object of the present invention is facilitating analysis of the cause of a timing error generated by integration of a set-up error and clock delay and the cause of a timing error generated by integration of a hold error and clock delay, and also providing a design improvement indication for a logic circuit section and a clock section.
In facilitating the above analysis and providing a design improvement indication, if relevant information is output in the form of text files and the like, the information amount is enormous and thus it takes long time to perform timing analysis for satisfying the timing specifications. In view of this fact, another object of the present invention is providing a method for analyzing the cause of a timing error of an LSI circuit more intuitively and presenting the results suggesting measures to be taken, or an apparatus implementing the method.
In order to attain the above objects, according to the present invention, a general set-up condition or hold condition where clock delay is not 0 is presented on a two-dimensional graph.
The signal delay analysis method for a semiconductor circuit of the present invention includes the steps of: preparing a two-dimensional graph G defined by two axes of Si and Sj+T−Wmax or two axes of Sj and Si−T+Wmax where T is a clock cycle, Wmax is a maximum delay of a circuit portion to be analyzed, and Si and Sj are clock timings to registers to serve as an input and an output of the circuit portion; and plotting delay analysis results of the circuit portion on the two-dimensional graph G prepared in the preparing step.
According to the present invention, in the signal delay analysis method for a semiconductor circuit described above, in the preparing step, an auxiliary line of Si=Sj+T−Wmax or an auxiliary line of Sj=Si−T+Wmax drawn diagonally from the origin may be added to the two-dimensional graph G prepared.
Alternatively, the signal delay analysis method for a semiconductor circuit of the present invention includes the steps of: preparing a two-dimensional graph G defined by two axes of Si and Sj−Wmin or two axes of Sj and Si+Wmin where Wmin is a minimum delay of a circuit portion to be analyzed, and Si and Sj are clock timings to registers to serve as an input and an output of the circuit portion; and plotting delay analysis results of the circuit portion on the two-dimensional graph G prepared in the preparing step.
According to the present invention, in the signal delay analysis method for a semiconductor circuit described above, in the preparing step, an auxiliary line of Si=Sj−Wmin or an auxiliary line of Sj=Si+Wmin drawn diagonally from the origin may be added to the two-dimensional graph G prepared.
According to the present invention, in the signal delay analysis method for a semiconductor circuit, an indication of correcting the clock timing to the register may be displayed when the delay analysis results on the two-dimensional graph G expand in parallel with the axis Si or the axis Sj, and an indication of improving signal delay of the circuit portion may be displayed when the delay analysis results expand vertically to the axis Si or the axis Sj.
The design assist apparatus for a semiconductor circuit of the present invention includes: preparing means for preparing a two-dimensional graph G defined by two axes of Si and Sj+T−Wmax or two axes of Sj and Si−T+Wmax where T is a clock cycle, Wmax is a maximum delay of a circuit portion to be analyzed, and Si and Sj are clock timings to registers to serve as an input and an output of the circuit portion; plotting means for plotting delay analysis results of the circuit portion on the two-dimensional graph G prepared in the preparing means; and indication means for displaying an indication of correcting the clock timing to the register when the delay analysis results on the two-dimensional graph G expand in parallel with the axis Si or the axis Sj, while displaying an indication of improving signal delay of the circuit portion when the delay analysis results expand vertically to the axis Si or the axis Sj.
Alternatively, the design assist apparatus for a semiconductor circuit of the present invention includes: preparing means for preparing a two-dimensional graph G defined by two axes of Si and Sj−Wmin or two axes of Sj and Si

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Delay analysis method and design assist apparatus of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Delay analysis method and design assist apparatus of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Delay analysis method and design assist apparatus of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3132176

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.