Deformation-absorbing leadframe for semiconductor devices

Active solid-state devices (e.g. – transistors – solid-state diode – Lead frame – With stress relief

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S670000

Reexamination Certificate

active

06455922

ABSTRACT:

FIELD OF THE INVENTION
The present invention is related in general to the field of semiconductor devices and processes and more specifically to the structure, materials and fabrication of leadframes for integrated devices.
DESCRIPTION OF THE RELATED ART
The leadframe for semiconductor devices was invented (U.S. Pat. No. 3,716,764 and U.S. Pat. No. 4,034,027) to serve several needs of semiconductor devices and their operation simultaneously: First of all, the leadframe provides a stable support pad for firmly positioning the semiconductor chip, usually an integrated circuit (IC) chip. Since the leadframe including the pads is made of electrically conductive material, the pad may be biased, when needed, to any electrical potential required by the network involving the semiconductor device, especially the ground potential.
Secondly, the leadframe offers a plurality of conductive segments to bring various electrical conductors into close proximity of the chip. The remaining gap between the (“inner”) tip of the segments and the conductor pads on the IC surface are typically bridged by thin metallic wires, individually bonded to the IC contact pads and the leadframe segments. Obviously, the technique of wire bonding implies that reliable welds can be formed at the (inner) segment tips.
Thirdly, the ends of the lead segment remote from the IC chip (“outer” tips) need to be electrically and mechanically connected to “other parts” or the “outside world”, for instance to assembly printed circuit boards. In the overwhelming majority of electronic applications, soldering accomplishes this attachment. Obviously, the technique of soldering implies that reliable wetting and solder contact can be performed at the (outer) segment tips.
It has been common practice to manufacture single piece leadframes from thin (about 120 to 250 &mgr;m) sheets of metal. For reasons of easy manufacturing, the commonly selected starting metals are copper, copper alloys, iron-nickel alloys for instance the so-called “Alloy 42”), and invar. The desired shape of the leadframe is etched or stamped from the original sheet. In this manner, an individual segment of the leadframe takes the form of a thin metallic strip with its particular geometric shape determined by the design. For most purposes, the length of a typical segment is considerably longer than its width.
After assembly on the leadframe, most ICs are encapsulated, commonly by plastic material in a molding process. It is essential that the molding compound, usually an epoxy-based thermoset compound, has good adhesion to the leadframe and the device parts it encapsulates. Palladium, described above as the outermost layer of the leadframe, offers excellent adhesion to molding compounds.
The leadframe not only has to tolerate an encapsulation process at elevated temperatures, but also should be amenable to good adhesion to the encapsulating material wherever the leadframe and the encapsulating material share a common boundary. The adhesion should withstand thermomechanical stresses and prevent the ingress of unwanted moisture and chemicals.
Experience has shown that large leadframe chip pads, introduced for supporting large area chips, have a strong tendency to delaminate from the chips, which have been attached to one pad surface by polymeric materials, and also from commonly used encapsulation materials, which surround the outer pad. The small voids thus created allow the accumulation of water molecules such that in the course of few days films of water are formed within the voids. Alternating between liquid and gaseous phases during the wide temperature swings encountered in accelerated testing, board solder attachment, and device operation, these water accumulations exert enough force on the encapsulating material to aggravate the delamination and eventually to originate microcracks. Quickly propagating, these nascent cracks frequently lead to destruction of the assembled device (known in the literature as “popcorn effect”).
Numerous proposals have been discussed in the literature to avoid delamination and popcorn effect by modifying the design of the leadframe and/or the surface preparation of the leadframe material. A preferred approach is to reduce the area of the chip mount pad so that the encapsulation material obtains direct contact and thus strong adhesion to the passive surface of the chip. Examples are described in U.S. Pat. No. 5,233,222 of Aug. 3, 1993 (Djennas et al., “Semiconductor Device having Window-Frame Flag with Tapered Edge in Opening”); U.S. Pat. No. 5,327,008 of Jul. 5, 1994 (Djennas et al., “Semiconductor Device having Universal Low-Stress Die Support and Method for Making the same”); U.S. Pat. No. 5,424,576 of Jun. 13, 1995 (Djennas et al., “Semiconductor Device having X-Shaped Die Support Member and Method for Making the same”); U.S. Pat. No. 5,429,992 of Jul. 4, 1995 (Abbott et al., “Leadframe Structure for IC Devices with Strengthened Encapsulation Adhesion”); U.S. Pat. No. 5,610,437 of Mar. 11, 1997 (Frechette, “Leadframe for Integrated Circuits”); U.S. Pat. No. 5,633,528 of May 27, 1997 (Abbott et al., “Leadframe Structure for IC Devices with Strengthened Encapsulation Adhesion”); and U.S. Pat. No. 5,714,792 of Feb. 3, 1998 (Przano, “Semiconductor Device having a Reduced Die Support Area and Method for Making the same”).
The undesirable consequence of all these approaches is the fact that the reduced area of the chip mount pad significantly increases the length of the straps connecting the mount pad to the leadframe. Consequently, these straps end up mechanically weakened. The temperature excursions during and after the molding process induce deformations, which frequently lead to failure of the straps due to shifting and tilting.
An urgent need has therefore arisen for a low-cost, reliable design approach for IC leadframes which provides all the assembly features leadframes are expected to offer: Immunity to the thermomechanical stresses in the molding process, adhesion to polymeric compounds, bondability and solderability. The new leadframe and its method of fabrication should be flexible enough to be applied for different semiconductor product families and a wide spectrum of design and assembly variations, and should achieve improvements toward the goals of improved process yields and device reliability. Preferably, these innovations should be accomplished using the installed equipment base so that no investment in new manufacturing machines is needed.
SUMMARY OF THE INVENTION
According to the present invention for the structure of a semiconductor integrated circuit (IC) leadframe, the chip mount pad has an area smaller than the chip intended for mounting and a plurality of support members, each attached externally to the perimeter of the pad and internally to the leadframe, and each having at least one portion located within the perimeter of the chip in a configuration operable to accommodate bending and stretching beyond the limit of simple elongation based upon inherent material characteristics.
The present invention is related to high density ICs, especially those having high numbers of inputs/outputs, and also to low end, low cost devices. These ICs can be found in many semiconductor device families such as standard linear and logic products, digital signal processors, microprocessors, digital and analog devices, high frequency and high power devices, and both large and small area chip categories. The package type can be plastic dual in-line packages (PDIPs), small outline ICs (SOICs), quad flat packs (QFPs), thin QFPs (TQFPs), SSOPs, TSSOPs, TVSOPs, and other leadframe-based packages.
It is an aspect of the present invention to provide a leadframe having the mount pad support members designed so that they absorb thermomechanical stress exerted during the molding encapsulation process, accelerated testing involving temperature and moisture variations, and the device operation.
Another aspect of the present invention is to design the geometries of the pad support members so that they include portions which provide bendin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Deformation-absorbing leadframe for semiconductor devices does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Deformation-absorbing leadframe for semiconductor devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Deformation-absorbing leadframe for semiconductor devices will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2831360

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.