Deep stride exercise machine

Exercise devices – Involving user translation or physical simulation thereof – Stair climbing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C482S051000, C482S057000

Reexamination Certificate

active

06551218

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an exercise apparatus for providing simulated walking or running motion and, in particular, a simple, compact exercise apparatus for producing a deep stride natural running motion using a combination of pins, linkages and gears.
2. Description of the Related Art
The benefits of regular exercise to improve overall health, fitness and longevity are well documented in the literature. Medical science has consistently demonstrated the improved strength, health, and enjoyment of life which results from physical activity. Aerobic exercises, such as jogging and walking, are particularly popular and medically recommended exercises for conditioning training and improving overall health and cardiovascular efficiency.
However, modern lifestyles often fail to accommodate accessible running or walking areas. In addition, inclimate weather and other environmental and social factors may cause individuals to remain indoors as opposed to engaging in outdoor physical activities.
There are also certain dangers and/or health risks associated with walking, jogging or running on natural outdoor surfaces. For example, medical experience has demonstrated that knee and ankle joints are often strained or injured when joggers run on paved or uneven surfaces or jogging paths which change direction often. Other examples of common injuries resulting from jogging, particularly on uneven terrain, may include foot sores, pulled or strained muscles, strained tendons and cartilage, back injuries, and head injuries, not to mention the risk of physical harm from pedestrian crossing accidents or even criminal activity. Thus, many exercise enthusiasts prefer the safety and convenience of an in-home or commercial exercise machine in order to provide desired exercise without the attendant inconvenience and risk of outdoor exercise.
Presently available indoor exercise devices for commercial or home use come in a wide variety of sizes and configurations. Typical indoor exercise devices may include, for example, stationary bicycles for simulating bicycle pedaling action, simulated stepping machines for simulating or replicating the motion associated with stair stepping exercise, and treadmills for simulating running, jogging, or walking. Other popular exercise devices include ski simulators and a wide variety of weight lifting or resistance training exercise equipment.
Each of these exercise machines has particular advantages and disadvantages for accomplishing a desired fitness goal. For example, treadmills generally permit a user to walk, jog or run on a stationary platform or endless belt. As such, treadmills are particularly well suited for general fitness and endurance training. However, the foot impact associated with walking or running may be undesirable in some cases due to advanced age, pregnancy, or other health conditions. In those cases it may be beneficial for the user to engage in a more low impact or non-impact exercise.
Cycling simulators, ski simulators, and stair simulators are particularly noted for the elimination of impacts affecting the hips, knees, ankles, and feet of a user. However, such exercise machines have a limited range of motion such that certain muscle groups are often not fully exercised to the degree desired by the user. In particular, these machines do not faithfully reproduce what many consider to be the most natural and beneficial exercise motions—namely, walking and running.
More recently, elliptical foot path exercise devices have been introduced into the market and have become popular for both home and commercial use. These devices provide a broader range of foot motion generally tracing a path approximating an ellipse or modified ellipse. For example, U.S. Pat. No. 5,299,993 to Stearns shows a modified stair stepping exercise machine which incorporates both vertical and horizontal movement using a combination of linkages to guide the foot pedals in an elliptical or ovate path. Habing in U.S. Pat. Nos. 5,299,993 and 5,499,956 provides articulated linkages controlled through cables by motor to move the foot pedals through an open ovate path. Both devices guide the foot pedals using linkages and rollers operating against a linear guide track.
Like Stearns and Habing, most elliptical path exercise machines utilize a linear guide track to produce the desired elliptical path foot motion. There are several disadvantages associated with such linear guide tracks. Guide tracks, by their nature, tend to make noise when in use due to a bearing or wheel riding back and forth along a track. The track is usually open to accommodate linear motion of the bearing and dust, dirt and grime can accumulate in the track causing noise and undue wear and tear. This can result in significant upkeep and repair to maintain such devices in good working order. Also, the open configuration of the track and the need for lubrication of the track and bearing provides for the possibility of inadvertent exposure of the user or other adjacent surface to greasy or oily stains. In carpeted areas, for example, an open lubricated track can result in difficult-to-remove stains in the underlying carpet.
Linear guide tracks also tend to produce a relatively shallow elliptical running path that is less simulative of the desired natural deep running stride. A deeper running stride is preferred because it is more simulative of the natural running motion and also results in more thorough exercise of the legs and musculature of the lower body of the user. For optimal deep stride running simulation, preferably the overall vertical component of the elliptical foot path displacement is between about one-half to two-thirds of the overall horizontal foot path displacement per cycle.
Elliptical exercise machines utilizing guide tracks rely on the reciprocating back-and-forth motion of the guide-track/bearing system to achieve the desired elliptical foot path motion. This back-and-forth motion tends to impart a jerkiness or discontinuity in the velocity or acceleration of the users foot as it moves along the elliptical path. It is unavoidable that the various moving components comprising the guide track and bearing must have a certain mass and, thus, the dynamics and changing velocities and accelerations of the individual components can often impart to the exercise machine an undesirable uneven stride motion or “kick”. This can make the device more difficult to use and decrease the smoothness and non-impact gliding ability of the exercise machine. Excessive acceleration of particularly massive linkages can cause undesired torsional or bending strain within associated support and pivot members, increasing wear and the risk of potential catastrophic failure.
Some of these deleterious effects can be attenuated by increasing the size of a flywheel mass associated with the exercise machine. But this adds weight and cost to the machine and often does not eliminate the jerkiness of the guide path mechanism to the extend desired.
Another drawback of many conventional elliptical path exercise machines is the relatively large amount of space occupied by the machine's “foot-print.” The foot-print is the amount of floor area an exercise machine occupies when properly set up, giving due consideration for any additional clearances required for safe operation of the machine and for ingress and egress of users. Smaller foot-print machines are more desirable for commercial use, such as in gyms, health spas and the like, because of the cost of renting and maintaining commercial floor space.
Notably, many of the prior art elliptical exercise devices utilize foot pedals that are rigidly attached to extended foot linkages. These foot linkages, in turn, are provided in connected relationship between a crank at one end and a guide or reaction roller at the other end. Therefore, in a conventional elliptical exercise machine the longest dimension of the machine's foot print typically extends well beyond the major axis of the elliptical foot path. This is due to t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Deep stride exercise machine does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Deep stride exercise machine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Deep stride exercise machine will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3078212

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.