Declarative language for specifying a security policy

Electrical computers and digital processing systems: support – Multiple computer communication using cryptography – Protection at a particular protocol layer

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C717S117000

Reexamination Certificate

active

06779120

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field
The invention relates to security and network services. More particularly, the invention relates to a declarative language system used in defining policy for an entire network and in providing monitoring and enforcing of computer network security.
2. Description of the Prior Art
Security administrators need tools that help them formulate their site security policy and translate it into monitoring and enforcement mechanisms. They need to be sure that the computer enforced policy—often cobbled together from a plethora of disjoint access control mechanisms—matches their enterprise policy, all too often specified in a loose natural language or a set of unwritten principles. This leads to confusion as to why access is being granted or denied to particular resources and may lead to unintentional breaches of security.
A way to reduce or eliminate the confusion described above is by providing a user-friendly and, yet, rigorous way of specifying security policy, as well as providing tools for monitoring and enforcing the security policy.
Blaze, Feigenbaum, and Lacy (BFL),
Decentralized Trust Management
, Proc. IEEE Conference on Security and Privacy (1996), used the term trust management to refer to a problem of deciding whether requested actions, supported by credentials, conform to policies. In other words, it deals with the questions of who, how, and what. Who (the principals, for example, people, computers and organizations) can access what (the resources being sought) and how (the actions performed against the target resources).
Mansouri-Samani, et al, GEM:
A Generalized Monitoring Language for Distributed Systems
, Distributed Systems Engineering, vol.4, no. 2 96-108 (June 1997) discloses a generalized-event monitoring notation that permits user-specified filtering and composition scripts to be dynamically loaded into distributed-event monitoring components. GEM uses “scheduled time events and default or user-defined detection windows” to cope with “variable communication delay problems.” The GEM event monitoring system is used “to detect complex event sequences and to convert these into simple events” that trigger management actions. The event monitors have been restricted to performing “very simple activities related to triggering or notifying events.”
J. A. Grompone,
A Declarative Language for the Configuration of Exchanges
, Telecommunications Journal, vol. 56, no.1 (January 1989) discloses the design and implementation of a high-level language, LEP, to define the routing and customizing of rules of a telex exchange. The routing concepts are basic and few in number. Each of the physical communication paths is called a line. The lines are arranged in groups. The purpose of the LEP language is to provide a comprehensive definition of all lines of an exchange, the arrangement of these lines in groups and the physical attributes of the groups. All groups taken together comprise all the lines without any lines missing or being repeated. A group is an ordered set of lines. The LEP term “access” is used to denote whether lines are permitted or forbidden to access other lines or services. Routing, a basic objective of an LEP program, is a way of associating sets of compiled codes with destinations, done through a sequence of elementary declarations. LEP also defines the possible destinations of a call. One of the main design concepts was to use a very simple structure for the declarations for even users unfamiliar with computer programming.
The LEP language cannot thread together multiple protocol layers of a network event. The LEP language lacks the sophistication in terms of richer expressions to allow a set of policy rules affecting different networking protocols to be applied to a complex protocol interaction between two communicating parties, and to security policy for an entire network. The LEP language does not suggest defining allowed traffic patterns and handling those events that deviate from those patterns.
Plasek, et al, Statistical Database Query Using Random Sampling Of Records, U.S. Pat. No. 5,878,426, discloses a method for obtaining decision support query results from a database table having multiple records. An attribute of the database table is sampled, which results in a collection of sampled data. The sampled data represents some percentage of all of the data corresponding to that attribute in the database table. The data associated with the attribute includes multiple data classes, and the sampled data is separated or partitioned into these data classes. A database query is applied to the sampled data rather than to all of the data corresponding to that attribute in the database table.
Plasek, et al, also discloses a method to obtain decision support query results from a database table where all of the data associated with a particular database attribute is grouped into various data classes. Each of the data classes is individually randomly sampled to obtain a corresponding number of class data samples. Each of the class data samples is then queried, which can include executing aggregation functions on each of the class data samples.
Plasek, et al, also discloses a method for providing result approximations in database queries.
Plasek, et al, does not disclose nor suggest providing a method to select a most specific and applicable result or policy rule. Plasek, et al, does not disclose nor suggest providing a method to rank data and does not order data in a database beyond partitioning data into classes and thereafter randomly sampling each data class such that database queries are applied to each of the samples.
Plasek, et al, does not disclose nor suggest providing a ,method to thread protocol layers of a network event together to provide a result to the network event.
Chow, et al, System, Method, and Program for Extending a SQL Compiler for Handling Control Statements Packaged with SQL Query Statements, U.S. Pat. No. 5,875,334 (Feb. 23, 1999) discloses an integrated compiler for compiling SQL3 control statements having procedural, i.e., control, information packaged together with query, i.e., non-procedural, statements. A query extractor contained within the parser extracts the query statement from the control statement leaving a control skeleton. The query statement is processed as usual through a query compiler for generating executable plans with the exception that the name resolution function for resolving variables is modified for looking up local variables. This modification takes into account the mapping of local and host variables to create a unification of local and host variables. The control skeleton is processed through a control analyzer which generates a representation of the control flow and a scope and symbol table. The control analyzer also unifies the local and host variables. A plan synthesizer then takes as input the control flow information, symbol tables, and individual executable plans for the query statements and generates a meta-plan comprising a merger of a top level plan for the control skeleton and sub-plans representing the executable plans of the query statement.
Chow, et al, does not disclose nor suggest a ranking method or an ordering method to handle a set of rules to be applied to a complex protocol interaction between two communicating parties.
Nor does Chow, et al, disclose or suggest a method whereby to thread protocol layers of a network event together to provide a rule applicable to the network event.
V. Paxson,
Bro: A System for Detecting Network Intruders in Real
-
Time
, Network Research Group, Lawrence Berkeley National Laboratory, Berkeley, Calif., LBNL-41197 (January 1998) discloses a stand-alone system for detecting network intruders in real-time by passively monitoring a network link over which the intruder's traffic transits. The system comprises a “policy script interpreter” that interprets event handlers written in a specialized language used to express a site's security policy. The specialized language is C-style because it comprises, for example,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Declarative language for specifying a security policy does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Declarative language for specifying a security policy, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Declarative language for specifying a security policy will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3313251

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.