Data transmission

Error detection/correction and fault detection/recovery – Pulse or data error handling – Digital data error correction

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06629285

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to data transmission in a wireless communication network and, more particularly, to a method and a system for transmitting data between a mobile station and a server in an efficient and reliable manner.
2. Description of the Related Art
The Wireless Application Protocol (WAP) has been developed to address the needs of the mobile stations as these devices have severe physical, memory and processing constraints. WAP is applicable to a number of different systems including GSM-900, GSM-1800, GSM-1900, CDMA IS-95, TDMA IS-136, wide-band IS-95 and third generation systems such as IMT-2000, UMTS and W-CDMA.
Pursuant to WAP, there are three classes of transactions: Class 0 for unreliable one way requests, Class 1 for reliable one-way requests, and Class 2 for reliable two-way request-response transactions. A transaction is defined as a unit of interaction between an “initiator” (e.g., a sender or a receiver) and a “responder” (e.g., a sender or a receiver). A transaction begins with an invoke message generated by the sender. In class 2 transactions, the receiver replies with one result message that implicitly acknowledges the invoke message. If the receiver takes longer than a specified time interval to service the invoke message, the receiver may reply with a “hold on” acknowledgement message before transmitting the result message so as to avoid the retransmission of the invoke message. The transaction ends when the sender receives the acknowledgement.
If the length of a message exceeds the maximum size specified by a bearer (e.g., a telephone company), then before the message is sent, it is segmented into an ordered sequence of data packets. Each data packet has a packet sequence number (PSN) assigned thereto. Thus, for example, the first segmented data packet is assigned a packet sequence number of zero, the second data packet is assigned a packet sequence number of one, the third data packet is assigned a packet sequence number of two, and so on. The data packets are transmitted individually or in groups, and then re-assembled by the receiver upon receipt. The maximum number of packets a message can be segmented is about 256 packets, each packet having a maximum size of 1 to 2 Kbytes. Thus, the maximum size of a message is typically less than 0.5 Mbytes.
In the case where the data packets are segmented into groups, the sender does not send any new packets belonging to the same transaction until receipt of the previous packet groups has been acknowledged. In other words, packet groups are sent according to a stop-and-wait protocol. Typically, the sender determines the number of packets in each packet group and transmits the packets of a packet group in one batch. The last data packet of each packet group has a Group Trailer (GTR) flag set and is often referred to as the GTR packet. The last data packet of the last packet group of the entire message has the Transmission Trailer (TTR) flag set and is also referred to as the TTR packet. The receiver stores all packets received and upon receipt of the GTR packet, the receiver checks whether it has received all packets belonging to that particular packet group. If it has received all of the packets in that group, the receiver returns an acknowledgement message containing the packet sequence number of that GTR packet. If, however, the GTR or TTR packet is received and one or more packets of the packet group are missing, the receiver waits for a period of time, e.g., ½ the median round-trip time (RTT), before transmitting a negative acknowledgement (NACK) message containing the packet sequence numbers of the missing packets of that particular packet group. If the sender does not receive an acknowledgement within a specified time interval after transmission of a packet group, it retransmits only the GTR or TTR packet of that packet group to the receiver.
Problems arise, however, as one or more of the acknowledgement or negative acknowledgement messages are lost during transmission due to, for example, handover errors or congestion in the wireless communication network, thereby resulting in the retransmission of data packets that the receiver has already received.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a more robust method and system of transmission of data.
According to one aspect of the invention, a receiver transmits a negative acknowledgement message to a sender listing all previously missing data packets of a data message. The receiver implicitly acknowledges received data packets by not listing them in the negative acknowledgement message.
According to another aspect of the invention, the sender retransmits a data packet only if the time elapsed after the original transmission of that data packet is greater than a predetermined time period.
In one embodiment, the sender transmits to the receiver a plurality of data packets in sequence. The time elapsed for each of the plurality of data packets after transmission of said each of the plurality of data packets is determined. The receiver transmits a message from the receiver to the sender notifying the sender that an identified one of the plurality of the data packets is missing. The sender retransmits to the receiver the identified one of the plurality of data packets only when the elapsed time determined for the identified one of the plurality of the data packets is greater than a predetermined time interval.
Other objects and features of the present invention will become apparent from the following detailed description considered in conjunction with the accompanying drawings. It is to be understood, however, that the drawings are designed solely for purposes of illustration and not as a definition of the limits of the invention, for which reference should be made to the appended claims. It should be further understood that the drawings are not necessarily drawn to scale and that, unless otherwise indicated, they are merely intended to conceptually illustrate the structures and procedures described herein.


REFERENCES:
patent: 5130986 (1992-07-01), Doshi et al.
patent: 5222061 (1993-06-01), Doshi et al.
patent: 5664091 (1997-09-01), Keen
patent: 5677918 (1997-10-01), Tran et al.
patent: 6018516 (2000-01-01), Packer
patent: 6105064 (2000-08-01), Davis et al.
patent: 6335933 (2002-01-01), Mallory
patent: 6392993 (2002-05-01), Hamilton et al.
patent: 0695 053 (1996-01-01), None
patent: 2 318 036 (1998-04-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Data transmission does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Data transmission, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Data transmission will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3042940

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.