Electrical computers and digital processing systems: memory – Storage accessing and control – Hierarchical memories
Reexamination Certificate
1999-01-22
2003-04-15
Nguyen, T. U. (Department: 2187)
Electrical computers and digital processing systems: memory
Storage accessing and control
Hierarchical memories
C711S142000, C711S143000, C711S147000, C711S148000
Reexamination Certificate
active
06549988
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to the field of cached data storage systems and more particularly to a data storage system that permits independent access from local hosts connected via I/O channels and independent access from remote hosts and remote storage systems connected via network links. A network of PCs permits building a high-performance, scalable, data storage system using off-the-shelf components at reduced cost. A configuration manager ensures consistency of data stored in the distributed cache.
2. Description of Related Art
A typical data processing system generally involves a cached data storage system that connects to local host computers via I/O channels or remote host computers via network links. The purpose of the data storage system is to improve the performance of applications running on the host computer by off loading I/O processing from the host to the data storage system. The purpose of the cache memory in a data storage system is to further improve the performance of the applications by temporarily storing data buffers in the cache so that the references to those buffers can be resolved efficiently as “cache hits”. Reading data from a cache is an order of magnitude faster than reading data from a back end storage device such as a disk. Writing data to a cache is also an order of magnitude faster than writing to a disk. All writes are cache hits because data is simply copied into cache buffers that are later flushed to disks.
Prior art data storage systems are implemented using proprietary hardware and very low-level software, frequently referred to as microcode, resulting in expensive and not portable systems. In contrast to the prior art systems, the preferred embodiment of the present invention uses standard hardware and software components. A network of commercial PCs is used to implement a high-performance data storage system. A method using the network of PCs includes an algorithm for a configuration manager that manages access to the distributed cache memory stored in PCs interconnected by the network.
Numerous prior art systems and methods exist for managing cache memory in a data storage system. The prior art has suggested several methods for managing cache for channel attached hosts. U.S. Pat. No. 5,717,884, Gzym, et. al., Feb. 2, 1996, Method and Apparatus for Cache Management, discloses data structures and algorithms that use a plurality of slots, each of which is used to store data files. U.S. Pat. No. 5,757,473, Vishlitzky, et. al., Cache Management system using time stamping for replacement queue, Jul. 28, 1998, discloses a method that uses time stamps to manage queues in a cached data storage system. U.S. Pat. No. 5,751,993, Ofek, et. al., May 12, 1998, Cache Management Systems, discloses yet another aspect in queue management algorithms. U.S. Pat. No. 5,600,817, Macon Jr., et. al., Feb. 4, 1997, Asynchronous read-ahead disk caching using multiple disk I/O processes and dynamically variable prefetch length, discloses read-ahead methods in cached storage systems. U.S. Pat. No. 5,758,050, Brady, et. al., May 26, 1998, Reconfigurable data storage system, discloses a method for reconfiguring a data storage system.
However, the above systems use very specialized embedded operating systems and custom programming in a very low-level programming language such as assembler. The obvious drawback of the above systems is high cost because assembler-level programming is very time consuming. Another drawback is inflexibility and lack of functionality. For example, some features such as reconfigurability in data storage are very limited in proprietary embedded systems when compared to general purpose operating systems. Finally, networking support is very expensive and limited because it relies on dedicated communication links such as T
1
, T
3
and ESCON.
One prior art system using networking of data storage systems is disclosed in U.S. Pat. No. 5,742,792, Yanai, et. al., Apr. 21, 1998, Remote Data Mirroring. This patent discloses a primary data storage system providing storage services to a primary host and a secondary data storage system providing services to a secondary host. The primary storage system sends all writes to the secondary storage system via IBM ESCON, or optionally via T
1
or T
3
communications link. The secondary data storage system provides a backup copy of the primary storage system. Another prior art system is disclosed in U.S. Pat. No. 5,852,715, Raz, et al., Dec. 22, 1998, System for currently updating database by one host and reading the database by different host for the purpose of implementing decision support functions.
However, the above systems use dedicated communication links that are very expensive when compared to modern networking technology. Furthermore, the data management model is limited to the primary-node sending messages to the secondary node scenario. This model does not support arbitrary read and write requests in a distributed data storage system.
There is a growing demand for distributed data storage systems. In response to this demand some prior art systems have evolved into complex assemblies of two systems, one proprietary a data storage system and the other an open networking server. One such system is described in a white paper on a company web site on Internet. The industry white paper, EMC Data Manager: A high-performance, centralized open system backup/restore solution for LAN-based and Symmetrix resident data, describes two different systems, one for network attached hosts and second for channel attached hosts. The two systems are needed because of the lack of generic networking support. In related products such as Celerra File Server, product data sheets suggest using data movers for copying data between LAN-based open system storage and channel attached storage system.
However, the above systems are built from two systems, one for handling I/O channels, and another for handling open networks. Two systems are very expensive even in minimal configuration that must include two systems.
In another branch of storage industry, network attached storage systems use network links to attach to host computers. Various methods for managing cache memory and distributed applications for network attached hosts have been described in prior art. U.S. Pat. No. 5,819,292, Hitz, et. al., Method for maintaining consistent states of a file system and for creating user-accessible read-only copies of a file system, Oct. 6, 1998, U.S. Pat. No. 5,64,751, and Burnett, et. al., Jul. 1, 1997, Distributed file system (DFS) cache management system based on file access characteristics, discloses methods for implementing distributed file systems. U.S. Pat. No. 5,649,105, Aldred, et. al., Jul. 15, 1997, Collaborative working in a network, discloses programming methods for distributed applications using file sharing. U.S. Pat. No. 5,701,516, Chen, et. al., Dec. 23. 1997, High-performance non-volatile RAM protected write cache accelerator system employing DMA and data transferring scheme, discloses optimization methods for network attached hosts. However, those systems support only network file systems. Those systems do not support I/O channels.
In another application of storage systems, U.S. Pat. No. 5,790,795, Hough, Aug. 4, 1998, Media server system which employs a SCSI bus and which utilizes SCSI logical units to differentiate between transfer modes, discloses a media server that supports different file systems on different SCSI channels. However the system above is limited to a video data and does not support network attached hosts. Furthermore, in storage industry papers, Data Sharing, by Neema, Storage Management Solutions, Vol. 3, No. 3, May, 1998, and another industry paper, Storage management in UNIX environments: challenges and solutions, by Jerry Hoetger, Storage Management Solutions, Vol. 3, No. 4, survey a number of approaches in commercial storage systems and data sharing However, existing storage systems are limited when applied to support multiple platform sy
Nguyen T. U.
Testa Hurwitz & Thibeault LLP
LandOfFree
Data storage system comprising a network of PCs and method... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Data storage system comprising a network of PCs and method..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Data storage system comprising a network of PCs and method... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3013745