Data storage array device and data access method

Electrical computers and digital processing systems: memory – Storage accessing and control – Specific memory composition

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C711S167000, C714S006130, C713S502000

Reexamination Certificate

active

06735672

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a data storage array device having a redundant configuration and so on for storing continuous media data such as image information.
2. Related Art of the Invention
With the recent development in multimedia technology, continuous media data such as digital images and voice data are more often recorded onto data storage devices (random access devices) such as a hard disk drive. For image data, such as MPEG for example, the transfer rate is about 1.5 to 30 Mbps per stream. Further, since the data size of continuous media data is large, it is becoming common to use several random access devices as an array, and to allow them to be externally recognized as one virtual large-capacity device.
Accessing continuous media data requires uninterrupted access to the data in data storage devices and reliability with which the server system as a whole does not stop even if a part of the data storage devices goes wrong. A plurality of data storage devices in a redundant configuration also enable recovery of correct data by using redundant data even if a part of the data storage devices goes wrong.
In a data storage array device with a redundant configuration, when a host writes data, the data from the host is written to the data storage devices with redundant data added to it. When the host requests data to be read out, the data is read out and returned to the host as it is, if all data storage devices are operating properly. If there is a failure in one of the data storage devices, the redundant configuration enables the data in the failed part to be reconstructed from the data of the remaining data storage devices operating properly and the redundant data to return the data to the host.
A data storage array device having such a redundant configuration can address partial failures of data storage devices. However, a server system for continuous media is not allowed to cause significant delay with respect to access requests from a host even if it may not be regarded as a failure, because delay above a certain level causes discontinuity of images.
To guarantee the response time delay in a data storage array device for such a server system that supports continuous media, some methods use a timer to guarantee the response time.
One of the conventional methods of processing with a timer upon reading out, Japanese Patent Laid-Open No. 2-81123 specification entitled “Parallel Data Transfer System and Its Device”, discloses a method in which delay of a response due to a failure of a data storage device is detected, and data is reconstructed by using redundant data. In a configuration of N number of data disks and one redundant disk, delay for Read requests addressed to the N+
1
disks is detected by starting a timer when any one of the disks responds to the Read request. If the last one has not responded after a predetermined period, the data of the disk with its response delayed is recovered from data of the proper data disks and data of the redundant disk. Thus, the delay after the disks begin to respond can be limited to a certain range.
Another conventional example, Japanese Patent Laid-Open No. 9-69027 entitled “Recording System for Multimedia”, discloses a method of guaranteeing delay with a timeout table for guaranteeing the response time for a plurality of users. The timeout table is set for each user, and a timer is set upon receipt to fare quest from a host, then Read or Write requests are issued to the disks. Timeout processing is performed when a response of any disk is delayed. If necessary data has not been accessed after a period stored in the timeout table, redundant data is accessed to recover the necessary data, and the response is returned to the host. After response to the host, the operation returns to the state of waiting the next requests from the host and repeats requesting to the disks and the timeout processing described above when a new request arrives. The delay time from the arrival of requests to the return of responses can be guaranteed by timer values in the timeout table.
However, the conventional data storage array devices have the problems described below.
The problems involved in the timer processing as in the conventional devices are as follows. Typical disk devices, which involves an access waiting time including a seek time of a magnetic head and a waiting time for disk rotation, adopts multiprocessing of commands (Read or Write instructions) by command queuing in order to optimize disk accesses and to increase the total transfer rate.
Optimizing execution of a plurality of commands within the disk devices by the command queuing can improve the transfer rate more significantly than separately processing commands without queuing. However, in the conventional examples, timer processing is performed in which requests and responses are in one-to-one correspondence, so that it is impossible to queue a plurality of requests from the host. Thus, each disk device processes the access requests independently of other requests, which precludes the disk devices from offering their full performance and from supplying data at a high transfer rate as a data storage array device.
If the data storage array device supports the command queuing in response to successive requests issued by the host, it is possible to increase efficiency of the operation of the disk devices by queuing accesses to the disk devices. However, it is difficult for the conventional methods using a timer to guarantee the response delay times imply by queuing accesses to the disk devices. For example, if the access time is guaranteed for the maximum number of requests acceptable at a time, the timer will be set long and therefore the response delay time will belong with no guarantee of real time operation. Further, when there are a small number of users, only a few requests are accepted at a time and the waiting time will be wasted.
SUMMARY OF THE INVENTION
Thus, with a view to solving the above-mentioned problems, the object of the present invention is to guarantee response performance for continuous media data accesses and to provide a data storage array device and so on that perform multiprocessing of a plurality of access requests while having a high transfer efficiency.
One aspect of the present invention is a data storage array device including: a plurality of data storage devices having a redundant information; and a controller that controls the data storage devices,
wherein said controller comprises:
instruction issuing means of sequentially issuing access instruction groups configured by a plurality of divided access instructions, to said plurality of data storage devices;
response detecting means of detecting responses to the instructions executed in the data storage devices;
timer means of counting time; and
completion processing means, which monitors a group of responses to a given one of the access instruction groups, and
if the responses from all data storage devices have been finished within a period set by the timer means, completes response processing for the given one of the access instruction groups at the point when the responses have been finished, and
if the responses from all data storage devices have not been finished at the end of a period set by the timer, completes response processing for the given one of the access instruction groups by using only the responses from the data storage devices that have finished their responses at the end of the period of the timer.
Another aspect of the present invention is the data storage array device according to 1st invention, wherein the timer for a given one of the access instruction groups is started with a timing of the response finished last in a group of responses to the just previous one of the access instruction groups.
Still another aspect of the present invention is the data storage array device, wherein the timer for a given one of the access instruction groups is started with a timing of the response finished first in a group of responses to

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Data storage array device and data access method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Data storage array device and data access method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Data storage array device and data access method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3261286

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.