Data acquisition and control apparatus for scanning probe system

Radiant energy – Inspection of solids or liquids by charged particles

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

H01J 3700

Patent

active

058774971

DESCRIPTION:

BRIEF SUMMARY
BACKGROUND OF THE INVENTION

1. Technical Field
The present invention relates to an apparatus which controls the scanning of a sample or body by a scanning probe system, the processing of the signals measured, and the pre-processing for storing such signals on a conventional video recorder.
2. Prior Art
The expression `Scanning probe system` will hereinafter be used as synonym for all kind of measurement or investigation systems, be it for medical or non-medical purposes, that have a probe for the determination of certain parameters of a sample. The word sample means in this connection any kind of material to be investigated. This is not limited to pure scientific samples such as semiconductors, metals, polymers, tissues, cells, and bacteria. It is also meant to cover human and animal bodies. In such a scanning probe system, the probe runs over the sample to be investigated in a step like manner, as is for example known from computer spin tomography systems, positron emission tomography systems, microtomography systems x-ray systems, scanning tunneling microscope systems, scanning electron microscope systems and so forth. The scan movement of the probe with respect to the sample is not necessarily a translatory movement. There are also systems known that scan a sample by means of a rotational movement of the probe around the sample to be investigated.
In the following, the present invention will be described in detail in connection with scanning probe microscope systems for the sake of simplicity.
The scanning probe microscope techniques evolved from the Scanning Tunneling Microscope (STM) developed by G. Binnig and H. Rohrer in 1982. The STM, which is disclosed for example in the U.S. Pat. No. 4,343,993, led to the development of a huge variety of microscopes. These microscopes are designed to investigate surfaces and atoms, or molecules on top of them, with atomic resolution from 100 nm down to about 0.1 nm. A common feature of scanning probe microscope systems is a fine tip, also more generally referred to as probe, with a very small radius of curvature at its apex. The probe is scanned over the surface of a sample by using positioning units.
Some scanning probe techniques are also based on the Atomic Force Microscope (AFM) which was invented by G. Binnig in 1986 (U.S. Pat. No. 4,724,318) and which has been further developed since then. Images of magnetic domains have been obtain by Magnetic Force Microscopy (MFM), as for example described by H. J. Mamin et al. in Applied Physics Letters, Vol. 55 (1989), pp. 318ff. A Scanning Capacitance Microscope is known from the patent U.S. Pat. No. 5,065,103, a Scanning Acoustic Microscope from U.S. Pat. No. 4,646,573, and a Scanning Thermal Profiler from U.S. Pat. No. 4,747,698. The scanning probe microscope techniques are also used in light microscopes having a resolution not limited by diffraction. In these so-called Scanning Near-field Optical Microscopes (SNOMs), described for example in U.S. Pat. No. 4,604,520, the probe essentially consist of a waveguide for light waves ending in a tiny aperture which either receives or emits light within the proximity of the surface of a sample. For the purpose of this invention, all these systems are referred to as scanning probe microscopes (SPMs).
SPMs are in principle simple to implement and provide for extreme resolutions. This is one of the reasons why SPMs are now widely employed when dealing with all kinds of surface analysis and imaging of sub-microscopic phenomena. In the past, SPMs were mostly used for scientific applications. The SPM techniques have to date also found their technical application for example in high technology manufacturing and quality control processes.
Under certain preconditions, SPMs could become more important outside basic science and highly specialized, industrial environments, too. The main factors are cost and complexity of SPM systems which typically include data processing, data acquisition and scan control means. In todays SPM systems, usually expensive hard disks or magneto optic sto

REFERENCES:
patent: 5036196 (1991-07-01), Hosaka et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Data acquisition and control apparatus for scanning probe system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Data acquisition and control apparatus for scanning probe system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Data acquisition and control apparatus for scanning probe system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-425157

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.